
一、基本概念

1、写出区域的定义(2')。
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连通开集。

(4) f(z)在 Ω内连续，且当有界区域 D

2、写出复值函数 f(z) 在区域 Ω 解析的四种等价定义。(2'×4)

(1) f(z) 在 Ω 内处处可导。

(2) f(x+ iy) = u(x, y) + iv(x, y)，u 与 v 在 Ω 内处处可微且满足 C −R 方程。

(3) f(z) 在 Ω 内每一点的邻域上展成幂级数。

满足 D ⊂ Ω，∂D 是有限条逐段光滑曲线时，
∫
∂D

f(z)dz = 0。

3、写出上述四种定义的等价性证明中使用的定理或思路。(6')

(1)⇒(2) 方向导数相等。
(1)⇒(3) Cauchy 公式。
(1)⇒(4) Cauchy 定理。
(2)⇒(1) 直接计算。
(3)⇒(1) 显然。
(4)⇒(3) Morera 定理。

(1) f(z) = e

二、简答题

1、(12')对于以下三种情况，分别写出所有可能的解析自同胚 f : D → D，并简述原因或指明所用

定理：(1) D = D(0, 1)；(2) D = C；(3) D = C。

iθ z
1

̸

̸

−
−
ā
a
z
，a ∈ D(0, 1)，θ ∈ R。(2')Schwarz 定理。(2')

(2) f(z) = az + b，a，b ∈ C，a = 0。(2')由 Liouville 定理与 Weierstrass 定理知 ∞ 是极点，从
而 f 是多项式。由代数基本定理知 f 是一次多项式。(2')

(3) f(z) = a
cz
z
+
+
d
b，ad− bc = 0(2')。f 是 C 上的亚纯函数，进而是有理函数。由 f 单可知分子分母

均为至多一次多项式。(2')

(1) I =

2、(4'×3)计算。∫
|z|=1

z̄dz；

I =
∫
|z|=1

1
z
dz = 2πi。
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(2) I =
∫
|z|=R

dz
(z−a)n(z−b)

，其中 n ∈ Z+，a，b 不在圆周 |z| = R 上；

记 I1 =
∫
|z−a|=ε

dz
(z−a)n(z−b)

= 2πi
(n−1)!

dn−1

dzn−1 (z − b)−1|z=a = −2πi(b− a)−n。

记 I2 =
∫
|z−b|=ε

dz
(z−a)n(z−b)

= 2πi(z − a)−n|z=b = 2πi(b− a)−n。

则 |a|，|b| > R 时，I = 0；|a| < R < |b| 时，I = I1；|b| < R < |a| 时，I = I2；|a|，|b| < R 时，若

̸

(3) f(z

a = b，则 I = I1 + I2 = 0；若 a = b，则 I = 0。(每种情形各1分)

) =
(z−1)(

1
z−2)

在 D1 = {1 < |z| < 2} 与 D2 = {2 < |z| < +∞} 的 Laurent 展开。
1
z
(1− 1

z
)−1 = − 1

2在 D1 上 f(z) = (z − 2)−1 − (z − 1)−1 = − 1
2
(1− z

2
)−1 −

∑+∞
k=0

(
z
2

)k −∑+∞
k=1

在 D2 上 f(z) = (z − 2)−1 − (z − 1)−1

z−k。(2')

= 1
z
(1− 2

z
)−1 − 1

z
(1− 1

z
)−1 =

∑+∞
k=1(2

k−1 − 1)z−k。(2')

F (z

3.(12')f(z) 在简单闭曲线 γ 的外区域 D 与 γ 上的每一点解析，且 limz→∞ f(z) = a。对 z ̸∈ γ 求

) := 1
2πi

∫
γ

f(w)
w−z

dw。

任固定 z ̸∈ γ，取 R 充分大使得 D(z,R) ⊇ γ。

若 z ∈ D，则在 Ω = D(z,R) 1
2πi

⋂
D使用 Cauchy公式得 f(z) =

∫
∂Ω

f(w)
w−z

dw = 1
2πi

∫
∂D(z,R)

f(w)
w−z

dw−
1

2πi

∫
γ

f(w)
w−z

dw。注意 1
2πi

∫
∂D(z,R)

f(w)
w−z

dw = 1
2π

∫ 2π

0
f(z + Reiθ)dθ → a(R → +∞)。在上式中令 R → +∞

若 z ∈ C \
得 F (z) = a− f(z)。(选对积分区域或环路3'，正确使用Cauchy公式3',式子最后一项趋于a得3'.）

D，则 Cauchy 定理指出 0 =
∂2

1
πi

∫
Ω

f(w)
w−z

dw，从而 F (z) = a。(3')

三、证明题

1、γ 为 C 中的紧致光滑曲线，ϕ(z) 为定义在 γ 上的连续函数，则 F (z) :=
2
1
πi

∫
γ

ϕ(w)
w−z

dw 在 C \ γ
解析。

证明：F (z+∆
∆
z
z
)−F (z) = 2

1
πi

∫ ϕ(w)dw
γ (w−z−∆z)(w−z)

。令∆z → 0，由控制收敛定理，该极限存在为
2
1
πi

∫
γ

ϕ(w)dw

3、非常数的函数 f(z) 在 1 < |z| < +∞ 解析，且 limz→∞ f(z) 存在，证明 |z| > 1

(w−z)2
，

与 ∆z 的收敛过程无关，从而 F 在 z 处可导。

上最大模原理成

立。

z
1 )，补充定义 g(0) = f(∞)，则 g 在 |z| < 1 解析，满足最大模原理，从而 f 在证明：令 g(z) = f(

|z| > 1 也满足最大模原理。
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5、设 f(z) 在圆环 D = {1 < |z| < 2} 解析，在 D 连续。若 max|z|=1 |f(z)| ≤ 1，max|z|=2 |f(z)| ≤ 2，
证明：|f(z)| ≤ |z|，∀z ∈ D。

f(z) 连续，由最大模原理即得。，则 g 在 D 解析，在证明：令 g(z) = D
z



̸      (1) 由于 w = 0 ⇔ z = 0 且 f ′(0) = 1 = 0, 由逆映射存在定理

2.4.(12′) 令 w = f(z) = ze−z, 其反函数记为 F (w).

(1)(3′) 其在 w = 0 附近有几个解析分支？

(2)(6′) 分别将它们在 w = 0 处展开为幂级数；

(3)(3′) 给出对应的收敛半径.

(2’)

知只有 1 个解析分支.(1’)
+∞

k=0

(2) 假设 z = F (w) =
∑

anw
n, 由 Cauchy 积分公式 (2’) 知

an =
1

2πi

∫
Γ

F (w)

wn+1
dw =

1

2πi

∫
Γ′

z

(ze−z)n+1
(1− z)e−zdz =

nn−1

n!
,

其中 Γ 是 w = 0 附近很小的 (单圈) 围道. (4’) 能作积分换元是因为在

z = 0 附近是解析同胚，Γ’ 是 z = 0 附近很小的 (单圈) 围道.

(3)直接用 Striling公式或计算相邻两项系数之比可得计算结果为 1
e
.(结

果 1’, 计算过程 2’)

|zn| → 1 有 f(zn) → ∞. 记 f 零点的集合为 {ωi}, 令 g(z) = f(z)∏
(z

3.2.(8′) 设 f(z) 在 D(0, 1) 中解析，证明存在序列 {zn} ⊂ D(0, 1), 使

得其同时满足：(1) limn→∞ |zn| = 1; (2) limn→∞ f(zn) 存在.

证明. 不妨设 f 零点数有限，否则结论显然. 若结论不成立，此时任一列
−ωi)
（记零

值原理知矛盾

点重数），则 g(z) 在 D(0,1) 上解析无零点，且边界上为 ∞. 对 1/g 用极大

.

3.4.(8′) 设 f 在区域 D 上解析，|f(z)| ≤ 1, 且 ef(z) ∈ R, 证明 f 为常数.

证明. f(z) 的虚部只能取离散值，用开映射原理立得.
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