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0 序言

本笔记是 杨杨杨磊磊磊 老师的《微分流形与拓扑》课程笔记. 杨磊老师在课上十分强调

数学中各领域之间的融合关系，这便是本笔记将要体现的核心思想：我们将以微分

流形及微分拓扑作为主线，然后从已有的知识出发添加一些关于复流形和代数几何

的内容，有时也会有一些代数拓扑的内容作为补充. 以下我们简要介绍各章的主要话

题.

第一节我们介绍了拓扑流形与光滑流形，复流形与 Riemann 面，仿射簇这些概

念的定义与一些基本例子，并且探讨了它们的一些基本性质. 从定义出发，我们能看

见流形定义的精炼性强，适用性广，并且确实能覆盖到我们在实际应用中想要研究

的诸多几何对象. 而具体到它们的性质，我们又能直观的感受到“刚性”不同所导致

的截然不同的现象.

第二节我们主要介绍与切空间相关的一些内容. 切空间的概念来源于局部上的线

性逼近，而这涉及到微分运算，从而可在光滑及更佳的范畴中定义. 首先我们会介绍

切空间的各种定义，需要指出它们不存在概念上的优劣性，它们都很好用，只是用

以建构不同的直观以及可推广性有所不同. 然后我们来研究可定向性并顺带引入丛的

语言，这也是一个有多重定义的概念，并且初步建构了局部——整体概念之间的联

系. 最后切空间的概念也是研究复流形和代数簇的基础，其定义方式类似但形态和光

滑流形有所不同：比如复切空间上会存在一个直和分解，代数簇切空间维数会和光

滑点，奇异点的判定相关，我们对此进行简要介绍.

第三节研究流形及流形之间映射给出的局部性态和整体性态. 局部性态来源于反

函数定理的思想：在一点处的微分能有效刻画局部性质，推广到流形上就得到常秩

定理. 与之对比，我们也对 Riemann 面上的局部性态加以讨论，并发现诸如开映射

的拓扑性质起到关键作用. 然后我们重点研究浸入和淹没这两种性质足够好的映射，

并考虑何时它们会导向整体性质，即使像集或原像集成为光滑子流形. 我们会发现以

隐函数定理为思想，原像集/水平集所具有的性质一般来说更好，并由此给出重要的

正则值/临界值概念. 这一部分的最后仍然给出了在复流形和代数几何中它的类似命

题. 最后一部分我们从正则值的原像出发建构映射度理论，具体介绍了 Riemann 面

上的映射度和微分拓扑上的映射度概念，强调了“常态映射”这一拓扑性质在定义

中的地位，并简要提及代数拓扑和代数几何中的映射度. 这一概念会将各种不同的研

究进路汇合在一起，堪称整篇笔记的顶峰.

第四节研究 Sard 定理及其应用. 首先我们给出 Sard 定理的描述和证明，并

给出在代数几何中一些思想类似的“Sard 型”定理. 然后给出三个应用：首先是

Whitney嵌入定理，我们给出一般非紧版本的证明，并且用它证明了 R4 中的纽结平

凡性. 然后是 Morse 理论，它可看作对临界点性质的进一步考察. 我们用 Sard 定理

说明了 Morse 函数的存在性，并解释了 Morse 函数如何刻画流形的拓扑性质. 最后

关于带边流形和 Brouwer 不动点定理的部分则作为用微分观点解决代数拓扑问题的
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一个具体实例.

笔记的目录中所有内容都属于一个标题下，这是因为这本质上只是该笔记的第

一个部分. 我们没有涉及到微分拓扑中一个重点——流形或者复流形上微积分的内容

以及其给出的 de Rham理论，而只是在讲义中某些位置作为注记以提供另一种视角.

由于这些内容不是课程的重点，所以迫于时间原因我们只好暂且将其移除，未来可

能有机会将其完全写成. 此外，关于代数几何的绝大多数内容，讲义中只能做到形似

的“介绍”而未能完全严格地给出证明，甚至可能会存在不少错误之处，在此致歉.



1 流形的微分结构 5

1 流形的微分结构

1.1 流形的定义与基本性态

1.1.1 拓扑流形与光滑流形

流形的概念首次出现于 B.Riemann 于 1854 年 7 月 10 日在哥廷根大学所做的

题为“论作为几何学基础的假设”的就职演说里，在其中他将 n 维流形直观地描述

为 n− 1 维流形的连续堆叠. 流形的概念是历史上一次重大的思想飞跃，这同时也是

基于物理学的需要：虽然人们已经发展了欧氏空间 Rn 上的微积分，但是在实际现

象的描述中，还有球面 Sn，环面 Tn，黎曼曲面等等，我们需要找到一种语言去直

接描述这些模型上的分析. 粗略来说，我们有以下两种进路：

• 作为“抽象的拓扑空间”，流形是那些足够好的局局局部部部欧欧欧氏氏氏的对象.

• 作为“欧氏空间的子空间”，流形是一个好的分分分层层层中的一个切片.

我们将从第一种看法开始，并在第一部分的中段来证明第二种看法也得到流形. 在给

出定义之前，我们将陈述关于流形研究的两条基本原则：

• 从局局局部部部思考问题，然后过渡到整体上；

• 所有性质应当是关于空间本身结构内内内蕴蕴蕴的.

Definition 1.1.1 (拓扑流形). M 是一个拓拓拓扑扑扑流流流形形形，若它满足：

(i) M 是第二可数的 Hausdorff 空间；（该条定义在历史上是为了让流形具有我们想要的

良好性质而总结下来的，为了剔除掉一些病态的局部欧氏空间. 我们一时半会还看不到它的

具体作用.）

(ii) 存在一族坐坐坐标标标卡卡卡集集集（atlas）
{
(ϕα, Uα)

}
使得 {Uα} 构成 M 的一个覆覆覆盖盖盖， ϕα :

Uα → Rn 是到欧氏空间中一个开开开集集集 Vα 的同胚.

其中性质 (ii) 被称为局局局部部部欧欧欧氏氏氏性性性，n 被称为 M 的维维维数数数.

拓扑流形的定义使得我们按照下述进路证明某个空间是流形：我们寻找 M 的一个覆

盖，然后证明覆盖里面每个集合都和欧氏空间中一个开集同胚. 不过我们也可以更加

遵循从从从局局局部部部上上上思思思考考考问问问题题题的的的原原原则则则：我们为每个点 x ∈M 寻找 x 的一个开邻域 Ux 和欧

氏空间中的一个开集同胚，这样所有 Ux 显然给出 M 的一个开覆盖.

关于拓扑流形的坐标卡，还有几点需要说明：每点附近的坐标卡都远不是唯一

的，比如如果 (U, ϕ) 是一个坐标卡，那么对任意 V ⊂ U 都有 (V, ϕ|V ) 是坐标卡. 这

样我们可以适当缩小 U 并调整 ϕ，使得 ϕ 是一个从 U 到 Rn 中一个标准开球的同

胚，又或者让 ϕ 是从 U 到 Rn 的同胚. 用这两种方式所定义的流形和上面的定义所

得结果相同.
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一个比较大的问题是拓拓拓扑扑扑流流流形形形的的的维维维数数数，该问题被称为维数不变性. 我们声称 n

被定义为 M 的维数，但我们并没有证明这样的 n 是唯一的. 也就是说，我们需要

证明每个点 x 附近的邻域不可能同时与 Rn 和 Rm 中的开集同胚，也就是证明 Rn

中一个开集和 Rm 中一个开集不同胚. 它的证明并不容易. 其中最自然的一种方法是

在拓扑空间范畴 Top 中建立同同同调调调理理理论论论，它是满足一些公理的某种拓扑不变量. 如果

ϕ :M → N 是不同维数流形之间的同胚映射，那么有下述同构成立

Z ∼= Hm(Rm,Rm − x) ∼= Hm(M,M − x) ∼= Hm(N,N − φ(x))

∼= Hm(Rn,Rn − φ(x)) ∼= 0.

这自然给出了维数不变性. 证明它先后利用了同调的同伦不变性，长正合列，切除公

理等等性质，足见其不平凡之处. 然而，我们马上就会见到该命题在光滑范畴下立马

变成线性代数的直接推论.

为了在流形上利用数学分析中的强大工具，我们需要在拓扑流形上引入光滑结

构，或者说微分结构. 这件事情是直观的：因为拓扑流形是局部欧氏的，我们就可以

把欧氏空间上的光滑结构，以及其连带着的欧氏空间上的微积分都搬到每个坐标卡

上. 但是如果我们只是在每个局部的坐标卡上考虑问题，这就和流形的整体无关了，

也就是说我们必须讨论各个坐标卡之间光滑结构的相相相容容容性性性. 然而，就算是对最简单

的拓扑流形，我们都不能保证它在所有坐标卡上都具有自然的相容性.

Example 1.1.2. 考虑拓扑空间 R，它显然是一个拓扑流形. 我们可给出两个从 R

到 R 的同胚

φ1(x) = x, φ2(x) = x3.

现在我们想讨论定义在“光滑流形”R 上的光滑函数. 通过坐标卡，我们用

R
φ−1
i−→R f−→R

的光滑性来定义 f 在 R作为“光滑流形”时的光滑性.对 φ1 来说这个定义和通常所

说的光滑函数是等同的，但是对 φ2 来说，这等价于我们要求 f(x1/3) 是光滑函数，

这两者显然不等价！

上面的例子告诉我们，光光光滑滑滑结结结构构构不不不是是是拓拓拓扑扑扑空空空间间间本本本身身身内内内蕴蕴蕴的的的. 也就是说，在给定

一个拓扑空间的基础上，我们需要选取一些“相容的坐标卡”并为它们赋予欧氏空

间拉回所给出的光滑结构，不同的选取可能给出不同的光滑结构. 在刚刚的例子中，

如果我们想要 φ1 和 φ2 “相容”，需要 f ◦ φ−1
1 光滑等价于 f ◦ φ−1

2 光滑. 通过考虑

坐标映射，这等价于 φ1 ◦φ−1
2 光滑. 这是一个只关于两个坐标卡的限制，它可以很容

易的被推广到一般的情形上.

Definition 1.1.3 (相容性). 在拓扑流形 M 上，称 (φ1, U1) 和 (φ2, U2) 是相相相容容容的坐

标卡，如果 U1 ∩ U2 = ∅，或者

(φ2 ◦ φ−1
1 )|φ1(U1∩U2)
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是欧氏空间开集之间的光滑映射.

Definition 1.1.4 (光滑流形). 称拓扑流形 M 上的一族坐标卡集 A = {(Uα, φα)}是

一个光光光滑滑滑图图图册册册，如果它们给出 M 的一个覆盖，并且它们是两两相容的. 如果两个光

滑图册中的所有坐标卡集都是两两相容的，那么称它们是等等等价价价的. M 上的一个光光光滑滑滑

结结结构构构指的是光滑图册的等价类，赋予了光滑结构的拓扑流形被称为光光光滑滑滑流流流形形形，记为

(M, [A]). 大部分时候我们会省略 [A] 这个分量，这是因为实际建构中很多流形总是

有一个“标准”的光滑结构.

Remark. 当我们选定一个光滑结构时，我们可以考虑所有和该光滑图册相容的坐标

卡，比如每个坐标卡的子坐标卡都是和整个光滑图册相容的. 如果两个坐标卡同时和

整个光滑图册相容，那么它们之间也是相容的（这是因为光滑性是局部性质，并且光滑图

册给出开覆盖） 所以我们可以良定义和该光滑图册相容的极极极大大大图图图册册册（它远小于比如，拓

扑上的极大图册）. 当我们说考虑光滑流形的一个坐标卡时，可以自动认为是从极大图

册中寻找. 这样我们就可以说在某点附近选取一个坐标卡和标准开球或者整个欧氏空

间同胚，在叙述上带来方便.

在证明一个具体的例子是光滑流形时，我们应当意识到问题的重点在于“坐标

卡的相容性”，而不是“流形本身有多光滑”. 比如，如果 M 和 Rn 在拓扑意义下

同胚，它可以被实现为仅含一个坐标卡的光滑图册，使 M 成为一个光滑流形. 这一

点可能会产生一些直觉上的偏差，比如下面的例子：

Example 1.1.5. 对任意连续函数 f : Rn → R，我们可以在 Rn × R 中考虑光滑映

射的图像：

V = {(x, f(x)) : x ∈ Rn}

将 V 赋予 Rn × R 的子空间拓扑，则投影映射 p : V → Rn, (x, f(x)) 7→ x 是连续双

射，我们也可以证明 p−1 是连续映射. 这告诉我们 V 根据 p 诱导的坐标卡成为一个

光滑流形，但很明显比如说单变元连续函数在 R2 上的图像可以有直觉上的“不光滑

点”.（如选取 f(x) = |x|）其原因是：V 虽然含有 Rn×R 的子空间拓扑，但其光滑结

构可能和 Rn × R 上的光滑结构相差甚远. 换句话说，V 不一定是 Rn × R 的“光滑

子流形”.

我们再来看一些更直观的例子.

Example 1.1.6 (S1 是光滑流形). 首先由于 S1 被赋予欧氏空间的子拓扑，因此总

是第二可数的 Hausdorff 空间. 然后把 S1 参数化为 {(x, y) : x2 + y2 = 1}. 构造两个

坐标卡 (M,f) 和 (N, g)，分别是

f−1 : (0, 2π) → S1, θ 7→ (cos θ, sin θ)

g−1 : (−π, π) → S1, θ 7→ (cos θ, sin θ).
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很明显

f−1(0, 2π) 在 S1 中的像为 S1 − {(1, 0)}，而 g−1(−π, π) 在 S1 中的像为 S1 −

{(−1, 0)}，从而

M = S1 − {(1, 0)}, N = S1 − {(−1, 0)}.

显然 f, g 均是拓扑同胚，而 g ◦ f−1 是 (0, 2π) → (−π, π) 的 C∞ 映射，所以 (M,f)

和 (N, g) 是相容坐标卡，这给出了 S1 的一个光滑结构.

Example 1.1.7 (RPn 是光滑流形). 我们知道

RPn = (Rn+1 − {0})/{x ∼ λx, λ ∈ R− {0}} ∼= Sn/{x ∼ −x}.

于是可以将 RPn 赋予 Rn+1 − {0} 的商空间拓扑，将其中元素用 [x0 : · · · : xn] 来表

示. 现在我们可以考虑以下 n+ 1 个坐标卡；

(φi, Ui) : Ui = {[x0 : · · · : xn] ∈ RPn, xi ̸= 0};

φi : Ui → Rn, [x0 : · · · : xn] = [
x0
xi

: · · · : 1 : · · · : xn
xi

] 7→ (
x0
xi
, . . . ,

xn
xi

).

其中最后一个坐标中删去了第 i 位的 1. 可以验证这是一个同胚，并且

φj ◦ φ−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj), (

xk
xi

)k ̸=i 7→ (
xk
xj

)k ̸=j .

由于所有分量缩放一个系数代表相同的映射，因此我们令 xi = 1，立即得到上

述表达式给出从 Rn−Rn−1（代表去掉 xj = 0 的那个超平面）到 Rn−Rn−1 的光滑映射.

因此 RPn 可被赋予一个光滑结构，它是一个光滑流形.

有时我们可以采用参参参数数数化化化的观点，这时建构流形的方式类似于“在每个局部上

赋予一个坐标系”. 最简单的例子是曲线，对一个一维实流形我们很少说在它的每个

局部如何选取一个坐标卡，而是直接考虑一个从 [0, 1] 到某个空间的映射作为其参数

化. 读者可以借助下面的例子对比它和上文中寻找图卡的区别.

Example 1.1.8 (S2 是光滑流形). 我们把 S2 分为上下左右前后六个半球，这六个

半球给出了 S2 的一个覆盖. 考虑六个圆盘分别从这六个方向向球面投影，比如从上

侧投影的映射就形如

p : D2 → S2, (x, y) 7→ (x, y,
√
1− x2 − y2).

显然 p 给出从 D2 到上半球面的同胚，我们可以容易验证它们给出一族相容坐标卡，

因此 S2 是一个光滑流形.

在拓扑流形之间我们就讨论连续映射，或者说拓扑流形范畴中的态射就是连续

映射.（它是拓扑空间范畴的子范畴） 但在光滑流形范畴中事情不完全一样了：我们要考

虑“保光滑结构”的那些映射，它的定义并不困难，利用图卡就可以回到欧氏空间

上光滑性的讨论.
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Definition 1.1.9 (光滑映射). 给定光滑流形 M,N，称一个拓扑上的连续映射 f :

M → N 是光光光滑滑滑映映映射射射，如果对任意 M 上的坐标卡 (U,φ) 和 N 上的坐标卡 (V, ψ)，

都有

ψ ◦ f ◦ φ−1 : φ(f−1(V ) ∩ U) → ψ(f(V ) ∩ U)

作为欧氏空间中开集之间的映射是光滑的.全体光滑映射构成的集合记为 C∞(M,N).

该定义中是对于光滑流形定义中自带的光滑图册而言的，如果我们采用之前关

于极大图册（与选取的光滑图册相容的全体图卡）的注记，那么我们可以在每点 x ∈ M

和 f(x) ∈ N 附近选取两个极大图册中的坐标卡 V 和 U 使得 f(V ) ⊂ U . 如果对所有

这样的坐标卡有上述光滑性成立，那么 f 就是光滑映射. 这两种定义是相互等价的.

我们可以验证 idM 是光滑映射，并且如果 f : M → N 和 g : N → P 都是光滑

映射，那么 g ◦ f 也是光滑映射，从而 {光滑流形，光滑映射} 构成一个范畴，就称

为光光光滑滑滑流流流形形形范范范畴畴畴，简称 光光光滑滑滑范范范畴畴畴，这是这门课上的重点关心对象之一. 进而，我们

可以定义微分同胚：

Definition 1.1.10 (微分（光滑）同胚). 设 M,N 是光滑流形，如果映射 f : M →

N 是光光光滑滑滑双双双射射射，并且其逆 f−1 : N → M 也是光滑映射，那么就称 f 是一个微微微分分分同同同

胚胚胚，也称 M,N 是微分同胚的.

在行文中，我们会以 M ∼= N 来表示在当前讨论的范畴中同构的对象，这里就

是微分同胚的对象. 在这门课上我们想要的关于光滑流形的性质都应当在光滑同胚下

被保持，即如果 M ∼= N，那么 M 所具有的所有“性质”N 也满足.

我们来看几个例子：

Example 1.1.11. • 考虑 N = Rk. 当 k = 1 时，为 R 赋予标准的光滑结构，则

光滑映射 f : M → R 就是我们之前例子中所谈论的光滑函数. 记全体 M 上的

光滑函数构成的集合为 C∞(M)，它能被实现为一个 R-代数. 对开集 U ⊂ M，

U 也能被看作光滑流形，定义在 U 上的全体光滑函数被记为 C∞(U). 对一般

的 k，f :M → Rk 光滑当且仅当每个分量都是光滑函数.

• 对任意坐标图卡 ϕ : U
∼→ V ⊂ Rn，U 通过这一图卡被赋予光滑结构，V 作为

Rn 的开子集也是光滑流形. ϕ 就给出了这两个流形之间的光滑同胚.

• 回顾例 1.1.2，(R, φ1 : x 7→ x) 和 (R, φ2 : x 7→ x3) 都为 R 赋予了一个光滑结

构，并且这两个坐标卡是不相容的. 然而

f : (R, φ1) → (R, φ2), x 7→ x1/3

给出了这两个流形之间的光滑同胚. 这说明同一个拓扑空间上不相容的光滑结

构也可能是微分同胚的.
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• 刚刚的例子实际上也给出了一个非光滑同胚的光滑双射例子：只需考虑 f :

R → R, x 7→ x3 即可.

Example 1.1.12 (Milnor 七维怪球). 一个有趣的问题是，给定一个我们熟悉的拓

扑空间，比如说 Rn, Sn，除了直观上标准的光滑结构外，在差一个微分同胚的意义

下还有没有别的光滑结构？（上面已经举出了一个 R 上不同的光滑结构，但是它和标准结构

是微分同胚的）

历史上第一个这样的例子是 Milnor 七维怪球. 它指的是与一个与 S7 同胚的拓

扑空间，但是和标准结构的 S7 并不光滑同胚. 构造它的方法和代数几何中所谓“奇

点”有关，我们会发现在奇点附近有相当有趣的几何来给出这样的例子.（但该笔记还

不足以给出“七维怪球”这个例子，下学期《同调论与示性类》课程中会完整呈现它）

另一个有趣的维数是 4 维. 当 n ̸= 4 时，Rn 仅有有限种互不微分同胚的光滑结

构. 但是 R4 有不可数无穷种这样的结构. 而对于 S4 来说，人们至今不知道 S4 上的

光滑结构是否唯一.

最后，我们来看在光滑范畴下如何解决之前令人头疼的维数不变性问题.

Theorem 1.1.13 (光滑范畴维数不变性). 若存在 U ⊂ Rn 和 V ⊂ Rm 之间的同胚，

则 n = m.

Proof. 设该同胚为 Φ : U → V . 任取一点 p ∈ U，则 Φ 在 p 处诱导出微分映射

dΦ|p : Rn → Rm.

另一方面，我们也能类似定义 dΦ−1|Φ(p). 根据微分的链式法则可知：作为线性映射

dΦ|p ◦ dΦ−1|Φ(p) = idRm , dΦ−1|Φ(p) ◦ dΦ|p = idRn .

根据线性代数的理论，如果两个线性空间之间存在同构，则它们的维数必然相等，

所以 n = m，证毕.

另一个在光滑范畴中容易体现的拓扑性质是可可可定定定向向向性性性. 我们在 1.2.2 节中对此有

详细讨论.

1.1.2 复流形和 Riemann 面

上面关于光滑流形定义的好处是，其精神可以完全被照搬到其它的流形上面，

比如复流形和代数簇. 比如对复流形来说，我们主要关心的对象是“Cn 上的解析

（全纯）映射”，因此我们先对 Cn 上开集之间的解析映射下一个定义，然后使用和

上面相同的精神模仿光滑流形来定义复流形.

Definition 1.1.14 (解析函数). 称一个从 Cn 中开集 Ω 到 C 的函数是解解解析析析的，如

果它在每点 a 的邻域内都能被展开为绝对收敛的幂级数∑
α

cα · (z − a)α.
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其中 α 是多重指标. 称一个从 Cn 中开集到 Cn 中开集的映射 f = (f1, . . . , fn) 是解解解

析析析映映映射射射，如果每个分量 fi 都是解析函数.

Definition 1.1.15 (复流形相关定义). 在拓扑流形 M 上，一个复复复坐坐坐标标标卡卡卡 (φ,U) 由

一个开集 U ⊂M 和一个从 U 到 Cn 中一个开集 V 的连续映射 φ 组成. 称两个复坐

标卡 (φ1, U1) 和 (φ2, U2) 相相相容容容，如果 U1 ∩ U2 = ∅ 或者

(φ2 ◦ φ−1
1 )|φ1(U1∩U2)

是 Cn 中开集之间的复解析映射. M 上的一族复复复图图图册册册 A = {(Uα, φα)} 是指一族两两

相容且覆盖整个 M 的复坐标卡. 如果两个复图册中的所有坐标卡集两两相容，那么

称它们是等等等价价价的. M 上的一个复复复结结结构构构指的是复图册的等价类，赋予了复结构的拓扑

流形被称为复复复流流流形形形.

复流形之间的解解解析析析（（（全全全纯纯纯）））映映映射射射是指一个连续映射 f : M → N，满足对任意

M 上坐标卡 (U,φ) 和 N 上坐标卡 (V, ψ) 都有

ψ ◦ f ◦ φ−1 : φ(f−1(V ) ∩ U) → ψ(f(V ) ∩ U)

作为 Cn 中开集之间的映射是解析的. 全体全纯映射构成的集合记为 O(M,N)，全

体全纯函数 f : M → C 构成的 C-代数记为 O(M). {复流形，复解析映射} 构成一

个范畴.

通过复变函数的学习，我们已经知道关于复解析映射的研究与光滑映射甚至实

解析映射相差甚远. 我们再简单地关于多复变中的解析函数多说几句. 与单复变中类

似，我们可定义“复可微”的概念，即在每点 a 附近存在复线性函数 T : Cn → C 使

得

f(z) = f(a) + T (z − a) + o(z − a).

我们可以复可微与复解析等价，从而复可微自动蕴含光滑性质. 不过，多复变中也有

一些非常奇怪的现象，比如下面的 Hartogs 定理：

Theorem 1.1.16 (Hartogs). 若函数 f : Ω → C 对每个分量分别全纯，即当 Ω 中

n− 1 个分量任意给定时，f 关于剩下那个分量的作为单复变函数解析，并且 f 局部

有界，则 f 作为多复变函数解析.

在单复变中，诸多定理如唯一性定理，Cauchy 积分公式都表明解析映射的刚性

足以让我们从边界上的信息推得区域内的所有信息，但这件事情在多复变中就不对：

边界处取值未必能决定所有信息，非常值解析映射下零点也未必构成孤立点（从而

和单复变中问题的讨论由较大区别）. 但换句话说，有关单复变的讨论，搬到流形上

也就是所谓一维复流形的理论已经非常丰富，并且也能直观看出它和实流形有关讨

论的异同点，所以在接下来的笔记中，一维连连连通通通复流形——Riemann 面面面是我们另一

个讨论的重点. 我们不再赘述一遍其定义，而是给出一些 Riemann 面的例子.



1 流形的微分结构 12

Example 1.1.17 (S2 的复结构). 在拓扑上，S2 是复平面 C 的一点紧化. 在复变相

关的讨论中它经常被记为 C 或者 C ∪ {∞}. 考虑两个开集

U1 = S2 − {∞} = C, U2 = S2 − {0} = C∗ ∪ {∞}.

恒同映射 φ1 = id 给出复坐标卡 (U1, φ1)，分式线性变换

φ2(z) =

1/z, z ̸= ∞

0, z = ∞

给出复坐标卡 (U2, φ2)，我们只需考察它们之间的相容性，这是因为相交处 φ1(U1 ∩

U2) = φ2(U1 ∩ U2) = C∗，并且

φ1 ◦ φ−1
2 : C∗ → C∗, z 7→ 1/z

是解析自同胚. 于是这就给出了 S2 的一个复结构，它被称为 Riemann 球面. 很明

显复结构蕴含光滑结构，这给出 S2 也是一个二维光滑流形.

Example 1.1.18 (圆环面 Torus). T 2 在拓扑的意义下同胚于 C/Γ，它通过 π :

C → C/Γ 被赋予商拓扑，其中

Γ = Zω1 + Zω2, C = Rω1 + Rω2.

那么 Γ 将 C 分为一些“网格”结构，其中一个胞腔为

A = {λ1ω1 + λ2ω2 : λ1, λ2 ∈ (0, 1)}.

现在考虑任意一个 A+ z，z ∈ C，根据 C/Γ 的拓扑，对每个 z，A+ z ↠ π(A+ z)

是一个同胚，考虑其逆给出从 C/Γ 中开集到 C 中开集的同胚 ϕz : π(A + z) → A，

所有 π(A+ z) 给出 C/Γ 的一个覆盖，容易验证它们是相容的，这将 T 2 赋予了复结

构.

我们知道复变函数中有亚亚亚纯纯纯函函函数数数的概念，亚纯函数函数可以作为全纯函数的分

式域，因此在代数上带来一些好处. 在几何上，亚纯函数可以在任何 Riemann 面上

定义，并且它可以直接被实现为从一个 Riemman 面到 S2 ∼= C 的全全全纯纯纯映映映射射射.

Definition 1.1.19 (亚纯函数). 设 X 为 Riemann 面，若存在一个开集 X ′ ⊂ X 和

全纯映射 f : X ′ → C，使得 X −X ′ 是孤立点集，且对任意 z0 ∈ X −X ′ 均有

lim
z→z0

|f(z)| = ∞,

则称 f 为 X 上的一个亚亚亚纯纯纯函函函数数数. X −X ′ 中的点被称为 f 的极点. X 上的全体亚纯

函数构成的集合记为 M (X).

与光滑流形类似，由于对任意连通开集 U ⊂ X，U 也是一个 Riemann 面，因

此可定义 O(U) 和M (U).
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Proposition 1.1.20. X 上的亚纯函数一一对应于从 X 到 S2 ∼= C 的一个全纯映射.

为了证明该命题，我们需要先把复变中一些命题搬到 Riemann 面上.

Theorem 1.1.21 (可去奇点定理). 给定 Riemann 面 X 及 X 上一点 a，若全纯函

数 f : X − {a} → C 在 a 的一个邻域内有界，则 f 可延拓为整个 X 上的全纯函数.

Proof. 只需考虑 a 附近的一个坐标卡 φ : U → V ⊂ C，则 f ◦ φ−1 是 C 上一个开集

上的全纯映射，利用复变中有关奇点分类的讨论，我们得到 f ◦φ−1 可被延拓到整个

V 上，这就证明了命题.

Theorem 1.1.22 (唯一性定理). 给定 Riemann面 X,Y 及全纯映射 f1, f2 : X → Y .

若 f1, f2 在一个有极限点的集合上等同，则 f1, f2 完全等同.

直观上，题目条件使得我们可以首先在这个极限点的局部推出 f1, f2 的等同关

系，然后借助连通性把正规等同关系不断向外扩充，因此我们将采用连通性论证的

方式来证明.

Proof. 只需证明

S = {p ∈ X :存在 p 的邻域 N 使得 f1(x) = f2(x), ∀x ∈ N}

是 X 上的既开又闭集，然后通过连通性论证即得结论.

• 根据邻域的性质显然 S 是 X 中的开集.

• 下证明 S 是闭集，假设存在一列 {pn} ⊂ S 使得 pn → p. 事实上，只通过

f1(pn) = f2(pn) 的信息我们就足以说明 p ∈ S.

根据 f1, f2 的连续性可知 f1(p) = f2(p). 选取 p 附近的坐标卡 φ : U → V 和

f1(p) = f2(p) 附近的坐标卡 ψ : U ′ → V ′ 满足 fi(U) ⊂ V ′（之前说过，这只是技术

性的假设.） 根据解析映射的定义，gi = ψ ◦ fi ◦ φ−1 是 C 上开集之间的解析映

射，并且对任意 n 均有 g1(φ(pn)) = g2(φ(pn)) 成立. 现在我们可以作为解析函

数讨论 g1 − g2，我们发现其零点集包含一个有极限点的集合 {φ(pn)}，因此它

只能是常值函数，进而 g1 = g2. 这也说明了 f1|U = f2|U，于是 p ∈ S.

现在题目条件告诉我们 f1, f2 在一个有极限点的集合上等同，遵循上面证明 S 的闭

集时的方法就已经得到该极限点落在 S 中，从而 S 非空，然后根据连通性（我们再

次强调 Riemann 面是连通一维复流形）就得到 S = X，证毕.

Corollary 1.1.23. 设 f : X → Y 是两个 Riemann 面之间的非常值解析映射，则 Y

中任意点的原像集都是离散集.

Proof. 任取 y ∈ Y，在上面唯一性定理 1.1.22 中取 f2 ≡ c，根据 f ̸= f2 可知它们只

在一个离散集上等同，即 y 的原像集是离散集.
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Remark. 这个推论也证明了我们可在M (X) 上良定义除法运算，因为不可定义点只

构成一个离散集，由此M (X) 可实现为一个域.

我们在后面将看到，关于一个点原像集的研究将成为微分拓扑中的一个重点，

在下面的例子中对此一瞥.

Example 1.1.24 (不同正则性的映射 f : S2 → S2). 我们考虑能在多大的程度上分

类这样的映射.

• f 是连续映射：它的正则性可以非常差. 我们知道如果 f 不是满射，那么通过

一个同伦可以将 f 同伦到常值映射. 但是 f 不仅可以是满射，并且每个点的

原像集都可以是无穷大. 考虑球面到自身连续映射的同伦类相当于考虑 π2(S
2)，

我们可以证明确实有 π2(S
2) ∼= Z. 虽然它有纯代数拓扑的证明（如同伦群的切除

定理），但一个好方法是建立它和一个光滑映射之间的同伦，并借助微分拓扑

的工具完成证明.

• f 是光滑映射：我们将利用很不平凡的 Sard 定理，证明一定存在一点 y ∈ S2

的原像是有限集并且是局部微分同胚，用这种方法可以容易地定义映射度的概

念. 另一种进路是考察 f 在体积形式上的拉回作用，从而使用积分的方式来研

究映射度，这也可以在同伦的意义下分类所有光滑映射. 后面的部分将介绍这

两种进路.

• f 是解析映射：我们也可以类似定义映射度的概念，但其定义就不依赖于所谓

正则点，从球面上任何点的原像都可以得到这一信息. 我们甚至可以完全分类

扩充复平面到自身的所有解析映射：这既是 C 上的亚纯函数，根据对极点附近

Laurent 级数的相关讨论，我们可得到扩充复平面到自身的解析映射是全体有

理函数.

1.1.3 仿射簇

我们最后再来简单介绍流形在代数几何中的对应物，即所谓代代代数数数簇簇簇/仿仿仿射射射簇簇簇的概

念. 对该讲义中代数几何的内容，我们以称述命题为主. 简单来说，我们考虑一一一族族族多多多

项项项式式式的的的解解解集集集并研究它的几何形态.

Definition 1.1.25 (仿射代数集). 给定代数闭域 k，对多项式环 k[x1, . . . , xn] 的理

想 a 定义

Z(a) = {(y1, . . . , yn) ∈ kn : f(y1, . . . , yn) = 0, ∀ f ∈ a}.

这样的子集被称为仿仿仿射射射代代代数数数集集集.

当 k = R 或 C 时，我们立刻能举出很多仿射代数集的例子，并看出它和流形之

间的联系：
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• n 维实球面是
∑
x2i − 1 = 0 的零点集，n 维复球面是

∑
z2i − 1 = 0 的零点集，

它就是 2n 维实球面；

• （多项式）函数的图像是 f(x)− y = 0 的零点集；

• 特殊线性群 SLn(R),SLn(C) 是 Rn2

或 Cn2

中多项式 det(A)− 1 = 0 的零点集.

然而对一般的代数闭域 k，我们需要定义一个拓扑，才可以谈论连续映射.

Definition 1.1.26 (Zariski 拓扑). 我们可验证全体仿射代数集满足闭闭闭集集集公公公理理理：这

是根据

Z(ab) = Z(a ∩ b) = Z(a) ∪ Z(b);

Z(
∑
i

ai) =
⋂
i

Z(ai);

Z((1)) = ∅, Z((0)) = kn.

因此全体 Z(a) 构成一组拓扑闭集，它为 kn 赋予 Zariski 拓拓拓扑扑扑. 注意对 k = C 来

说，Zariski 拓扑比一般 Cn 上的拓扑更粗（闭集更少）.

Example 1.1.27. 我们可以用下述例子来展现 Zariski 拓扑有多粗糙：C 上的仿射

代数集是某个一元复系数多项式的零点集，根据代数基本定理（我们会在 1.3.14 中证明

它），这是一个有限离散点集. 于是 Zariski 拓扑是 C 上的余有限拓扑，它里面的开

集都特别大，与欧氏拓扑非常不同.

反过来，对 kn 中的任意集合 S，我们也能定义其对应的理想.

Definition 1.1.28. 对任意 S ⊂ kn，定义

I(S) = {f ∈ k[x1, . . . , xn] : f(y1, . . . , yn) = 0, ∀ (y1, . . . , yn) ∈ S}.

连接两个对应的桥梁是 Hilbert 零点定理：

Theorem 1.1.29. • Z(I(S)) = S，即它在 Zariski 拓扑下的闭包；

• （Hilbert 零点定理）I(Z(a)) =
√
a，即 a 的根式理想

√
a = {f ∈ k[x1, . . . , xn] : ∃n ∈ N∗ s.t. fn ∈ a}.

于是仿射代数集一一对应于根式理想.

Definition 1.1.30 (仿射簇). 称一个仿射代数集是仿仿仿射射射簇簇簇，如果它在 Zariski 拓扑

下不可约，即不能写为两个真闭子集之并. 仿射代数集是仿射簇当且仅当它对应的根

式理想为素素素理理理想想想.

根据下述定理，我们对仿射代数集的研究可以化归为对仿射簇的研究.

Theorem 1.1.31. 仿射代数集均唯一分解为有限个互不包含仿射簇之并.
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根据 Hilbert 零点定理，kn 中每个点对应 k[x1, . . . , xn] 中的一个极大理想. 给

定仿射代数簇 X，X 上的点一一对应于包含 I(X) 的极大理想，从而一一对应于商

环 k[x1, . . . , xn]/I(X) 的极大理想. 由此我们给出如下定义：

Definition 1.1.32 (坐标环). 对仿射代数集 X ⊂ kn，定义 X 对应的坐坐坐标标标环环环为

A(X) = k[x1, . . . , xn]/I(X). 每点 p ∈ X 在坐标环上对应一个极大理想，记为 mp ⊂

A. 几何上，A(X) 相当于模去了所有在 X 上取值为 0 的多项式，而 mp 则是在 p

处取值为 0 的多项式构成的等价类.

Remark. 在实际运用中 mp 的定义似乎会随语境变化，在讨论局部性质时它也可能

代表下面所定义的局部环中在 p 处取值为零的极大理想.

接下来我们定义局部环. 定义局部环的动机是为了得到仿射簇 p 处的局部信息，

即我们仅考虑在 p 附近的一个开邻域中良好定义的函数.

Definition 1.1.33 (局部环). 对仿射代数集 X ⊂ kn 上一点 p，定义局部环 OX,p 为

坐标环 A 关于 mp 的局部化. 具体来说，由于 mp 是极大理想，因此 A−mp 是 A 中

的乘性子集. 现在我们可定义 Op,X 为全体形式分数 {f/g, f ∈ A, g ∈ A − mp} 在等

价关系

f1/g1 ∼ f2/g2 ⇔ ∃ s ∈ A−mp s.t. s(f1g2 − f2g1) = 0

下的等价类.

为了理解它代表的几何信息，我们给出正则函数的概念：

Definition 1.1.34 (正则函数). 对仿射代数集 X ⊂ kn 上的开子集 U，称函数

f : U → k 在 p 处局局局部部部正正正则则则，如果存在 p 点附近的 Zariski 开邻域 N 以及 g, h ∈

k[x1, . . . , xn]，使得在 N 上 f = g/h 且 h 在 N 上处处非零. 如果 f 在 U 上每点处

都正则，则称 f 为 U 上的正正正则则则函函函数数数，将全体 U 上的正则函数记为 OX(U).

现在我们可以说，局部环就是 p 处的所有局部正则函数所构成的等价类. 对局

部环中的任意元素 [f/g]，由于 {g(x) = 0} 构成 X 中的一个闭集且 g /∈ mp，因

此 g 在 p 附近的一个开邻域上有定义，从而是 p 处的正则函数. 另一方面，两个

p 附近的正则函数 f1/g1, f2/g2 表示同一个等价类当且仅当存在 s ∈ X − mp 使得

s(f1g2 − f2g1) = 0，我们考虑同时让 s, g1, g2 取非零值的集合，它构成 x 附近的开邻

域. 则在这个更小的开邻域上的确有 f1/g1 = f2/g2. 因此我们可以说局部环中的元素

是 p 附近的一个芽芽芽函函函数数数. 关于芽结构的详细讨论见定义 1.2.6.

关于正则函数和坐标环，有如下一些结论成立：

Proposition 1.1.35. 对仿射坐标集 X，存在从坐标环 A(X) 到正则函数环 OX(X)

的自然同构，它将每个多项式等价类映为在 X 上定义的多项式函数.

也就是说，所有在局部上正则的函数都在整体上成为某个多项式函数.
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Proposition 1.1.36. 对仿射簇 X，所有局部环 OX,p 可以被嵌入在 A(X) 的有理函

数域 K(X) 中. 将 A(X) 也视为 K(X) 中子环，则有

A(X) =
⋂
p∈X

OX,p.

这是上一个命题在仿射簇下的展示.

Remark. 我们在课上多次提到代数簇的概念. 代数簇的概念比仿射簇更广泛，类似

流形的定义，代数簇在局部上看起来是仿射簇，我们可以通过一族满足相容性条件

的仿射开覆盖来定义它. 代数簇中包含射射射影影影簇簇簇（由齐次多项式定义）和拟仿射簇的概

念，它们都是非常重要的对象. 仿射簇是这分讲义中重点研究的对象.

最后我们来定义仿射簇之间的态射.

Definition 1.1.37 (仿射簇之间的态射). 若 X ⊂ kn，Y ⊂ km 分别为仿射簇，称

φ : X → Y 是态射，如果 φ 的每个分量都是正则函数. 有时我们也将其称为正则态

射.

我们在之后的章节中会关注和仿射簇相关的几何，尤其是对微分拓扑中的命题，

考虑它能否在代数几何中给出对应物. 直观上仿射簇会在很多地方给出光滑结构，但

也允许含有相当奇异的形态出现（应当和后文的临界点和 Riemann 面上的奇异值区分开），

如在 R2 或 C2 中考虑 xy = 0 的零点集，它显然在 0 点附近不会局部同胚于欧氏空

间. 一般来说仿射簇和流形之间会存在相似之处，我们也经常把流形上的定义类比到

仿射簇上，但仿射簇上的的研究无疑是更加复杂的，并且多项式的结构允许我们可

以运用更多数学工具来对它进行研究.

1.2 切空间与微分映射

1.2.1 切空间的多种定义

我们在 1.1.13 中证明了光滑范畴下的维数不变性，在那里我们利用了欧氏空间

的微分映射来把问题转化为线性代数. 显而易见，将这样的结构搬到一般的微分流形

上对分析问题非常有益，这就是本节研究的重点. 回忆在欧氏空间中，我们可以定义

光滑映射的方方方向向向导导导数数数和和和偏偏偏导导导数数数：

∂vf |p = lim
λ→0

f(p+ λv)− f(p)

λ
.

其中 v ∈ Rn 是一个方方方向向向向向向量量量，而偏导数相当于选择 Rn 的标准基作为方向向量. 另

一方面，我们可以定义函数在一点处微微微分分分的概念，它相当于在某某某点点点附附附近近近用线线线性性性映映映射射射

来逼近函数 f .

Definition 1.2.1 (欧氏空间中的微分). 设 f : U → V 是欧氏空间 Rn,Rm 中开集之

间的光滑映射. 定义它在某点 p 处的微微微分分分为一个实线性映射 df |p : Rn → Rm，使得

f(x) = f(p) + df |p(x− p) + o(x− p).
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分别取 Rn 和 Rm 的标准基，则微分对应的矩阵为：
∂x1

f1 . . . ∂xnf1

∂x1
f2 . . . ∂xnf2
...

. . .
...

∂x1
fm . . . ∂xnfm

 .

这就是大名鼎鼎的 Jacobi 矩矩矩阵阵阵，记作 Jacp(f).

微分映射最重要的性质是链式法则，即函子性：

d(g ◦ f)|p = dg|f(p) ◦ df |p.

现在我们想要把微分的概念推广到光滑流形上，这样就可以让我们运用上分析的强

大工具. 由于微分映射本身就是局部定义的，因此最 naive 的想法是直接对每点

p ∈ M 寻找它的一个坐标卡 φ : U → V ⊂ Rn，再对 f(p) 寻找坐标卡 φ′ : U ′ →

V ′ ⊂ Rm，然后把切映射定义为 d(φ′ ◦ f ◦ φ−1)|φ(p). 但这样做不是良定义的：因为

一个点附近有很多种坐标卡选取，不同的选取显然不会得到相同的微分映射.

解决方法是：我们需要一个只依赖于点 p 和流形 M 的用来定义微分映射的抽

象的地方，这个地方被称为切切切空空空间间间，记作 TpM . 切空间中的元素被称为切切切向向向量量量. 给

定一个局部坐标，切空间中的元素可以被“展现”在这个局部坐标上，在不同的局

部坐标下我们有不同的“展现”. 在欧氏空间中，每个点附近的切空间都典范地等

同于 Rn，但是在流形上我们必须把每点附近的切空间给分开，只有在赋予坐标卡

φ : U → V ⊂ Rn 时，U 中每一点的切空间在这一展现下被典范地等同在一起，因此

可以局部上谈论切空间之间的关系等等. 只要相容性被满足，那么就得到一个良定义

的切空间.

Definition 1.2.2 (切空间：泛性质定义). 给定 n 维光滑流形 M 与点 p ∈M，p 处

的切切切空空空间间间由如下资料组成：

• 一个 n 维线性空间 TpM；

• 对每个包含 p 的坐标卡 φ : U → V，选取一个同构 ιφ : TpM → Rn 满足相容

性条件：线性映射 ιφ′ι−1
φ : Rn → Rn 由转移映射 φ′φ−1 在 φ(p) 处的微分映射

d(φ′φ−1)|φ(p) : Rn → Rn 所诱导.

根据上述定义，我们确实可以先对一个给定的局部坐标谈论并把该局部坐标下

的切向量作为“标准的”，然后通过相容性条件就唯一确定了标准切向量在任意局部

坐标下的像. 通过把下述图表过渡到切空间上，我们就能说明为什么这样定义出的同
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构 ιφ 对任意两个图卡都具有相容性.

V

U

V1 V2

φ01 φ02

φ0

φ1 φ2

φ12

但是我们还想寻找更加直观的与坐标图卡无关的切空间的满足上述定义的模模模型型型，并

且寻找一个足够好的模型把它推广到复流形，代数簇上.

第一个想法来自古典微分几何中的曲线论和曲面论. 我们知道，对任意一条曲

线，我们可在某点处定义其切向量. 在物理上，它可以被刻画为一个质点沿曲线运动

时，在该点处的速度向量. 对曲面上一点，我们也可以讨论在该点处与曲面相切的平

面，被称为切平面. 这两种对象都隐含着“线性逼近”的思想，即我们选取了在该点

附近最“接近”原曲线与原曲面的一个线性对象. 这个对象相当直观地体现出了“切

空间”一词的形象.

然而，上面建构的一个致命的问题是整个直观的图像都是依赖于外蕴的一个

“背景”上的欧氏空间的，比如在古典曲面论中就是三维空间. 一个流形可能有非

常多种嵌入欧氏空间的方式（虽然我们还没有陈述子流形的定义，但这是非常直观的，比如

曲线），这个问题可以通过只在给定一种嵌入的时候定义这种切空间来解决. 但另一

个问题是，是是是否否否任任任意意意流流流形形形都都都能能能被被被嵌嵌嵌入入入一一一个个个欧欧欧氏氏氏空空空间间间？？？

答案是肯定的，这便是 Whitney 嵌嵌嵌入入入定定定理理理. 但这个定理证明并不平凡，我们

将在后续讲义中去考虑这件事. 因此我们的确能用这种方式给任意流形一个切空间的

模型. 其定义如下：

Definition 1.2.3 (切空间定义：外蕴). 给定 n 维光滑流形 M，点 p ∈M 与一个嵌

入 Φ = (Φ1, . . . ,ΦN ) :M → RN . 考虑 p 附近的一个局部坐标 φ : U → V ⊂ Rn，则

Rn ⊃ V
φ−1

−→U
Φ−→RN

是欧氏空间开集之间的光滑映射，定义 TpM = im d(Φ ◦ φ−1)|φ(p) 为 RN 的 n 维线

性子空间. 在图像中，我们经常把零点平移到 p，这时切空间和几何上定义的切空间

是一致的.

我们尝试把该定义改为一个内蕴的定义，关键在于注意到这些落在 RN 中的切

向量都从何而来：对任何一条曲线 γ : [−a, a] → M ⊂ RN 使得 γ(0) = p，我们都可

以将 γ′(0) 实现为 RN 中的一个向量，该向量就落在上述切空间中. 另一方面，对切

空间中任意向量，我们也可以通过局部坐标卡来找到一条曲线使得它成为该曲线在

0 处的切向量. 于是我们就可以用曲线本身来“表示”它对应的切向量，而曲线是内

蕴的，这样全体切向量就实现为了“曲线的等价类”.（注意：这个等价关系还是要依赖

于局部坐标，他并不是所谓“芽”的结构，就算两条曲线在 p 以外完全分离，它们也可能代表同

一个切向量，但选择不同的局部坐标得到的结果相同.）
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有没有一种定义可以完全回避局部坐标的选取，直接借助 M 本身的信息来定义

切空间？答案是有的. 我们回顾欧氏空间的情形，考虑方向向量的本质是为了定义一

个函数的方向导数和偏导数，进而定义一个函数的 Jacobi 矩阵（微分映射）. 所以

我们并不关心几何上这些方向向量长什么样，而而而更更更关关关心心心它它它们们们作作作用用用在在在函函函数数数上上上得得得到到到怎怎怎样样样

的的的方方方向向向导导导数数数. 换句话说，我们把每个 ∂v|p 实现为一个算子

∂v|p : C∞(Rn) → R, f 7→ ∂f

∂v

∣∣∣∣
p

.

这也是切向量在局部坐标上总是采用

∂

∂x1

, . . . ,
∂

∂xn

的记号的原因. 反过来，怎样的算子 D : C∞(Rn) → R 才会成为直观意义上的一个

方向导数呢？注意到一个方向导数满足下述性质：

• 线性：∂v|p(f + g) = ∂v|p(f) + ∂v|p(g)，∂v|p(λf) = λ · ∂v|p(f).

• Leibniz 法则：∂v|p(fg) = f(p) · ∂v|p(g) + ∂v|p(f) · g(p).

幸运的是，上面两条纯代数的性质已经足以刻画方向导数.

Lemma 1.2.4 (方向导数的代数刻画). 若一个线性映射 D : C∞(Rn) → R 满足

Leibniz 法则：

D(fg) = f(p)D(g) +D(f)g(p),

则存在切向量 v 使得 D = ∂v|p，即 D 是在 p 处沿 v 的方向导数.

Proof. 我们先来直观感受一下该命题为什么成立. 全体方向导数是由 ∂xi |p 张成的线

性空间，它们满足

∂xi |p(xj) = δij .

其中括号里的这些 xj 被我们看作“向第 j 个分量投影的函数”. 这也就是说方向导

数应当被它在这些坐标投影函数上的取值所完全确定. 任何一个光滑函数在 p 处可以

被一个线性映射 df |p 逼近，这个线性映射就应当给出 f 在 D 下的取值. 我们接下

来将采用积分形式的 Taylor 展开来证明这件事.

首先根据条件容易知道 D(1) = 0，从而对任意常数 c 都有 D(c) = 0. 根据

Taylor 展开式，对任意 x ∈ Rn 都有

f(x)− f(p) =

∫ 1

0

df |p+t(x−p)(x− p) dt

=

∫ 1

0

n∑
i=1

(xi − pi) · ∂xif |p+t(x−p) dt

=
n∑
i=1

(xi − pi) ·
∫ 1

0

∂xif |p+t(x−p) dt.
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两边作用 D 可知：

D

(
(xi − pi) ·

∫ 1

0

∂xif |p+t(x−p) dt
)

= D(xi) ·
∫ 1

0

∂xif |p dt

= D(xi) · ∂xif |p.

于是取 v = (D(x1), . . . , D(xn)) 可知

D(f) =
n∑
i=1

D(xi) · ∂xif |p =
n∑
i=1

vi · ∂xif |p = ∂vf |p.

证毕.

这个定义非常内蕴，并且可以非常容易地推广到一般的微分流形（以及更广的概

念）上去.

Definition 1.2.5 (导子). 设 A 是任意一个域 k 上的代数（如 C∞(U,R) 就是 R-代数）

，B 是一个 A-双模（我们可定义 a ∈ A 在 b 上的左乘和右乘作用），一个导导导子子子 D : A→ B

是满足 Leibniz 法则

D(fg) = f ·D(g) +D(f) · g

的 k-线性映射.

在上面欧氏空间的例子中，在每点处我们通过

C∞(Rn)× R → R, (f, x) 7→ f(p) · x

来将 R 实现为一个 C∞(Rn)-模，这样每个方向向量就是一个 C∞(Rn) → R 的导子.

对一般的流形 M，我们当然可以用全体 C∞(M) → R 的导子来定义切空间，但

是切空间是一个局局局部部部性性性质质质，我们只需要在 p 的附近获得函数的信息就够了，它不一

定要定义在整个 M 上 （在光滑范畴中，利用单单单位位位分分分解解解我们不难在保留局部信息的前提下将一

个映射延拓到整个 M 上，但是在全纯范畴下则不行，Liouville 定理告诉我们没有所谓“全纯截断

函数”，所以这样的定义是必要的.） 这引出了函数芽的概念.

Definition 1.2.6 (光滑函数芽). 给定光滑流形 M 上一点 p. 对任意两开集 p ∈ U ⊂

V，包含映射 i 诱导出限制映射 i∗ : C∞(V ) → C∞(U)，将 f 在限制映射下的像自然

记为 f |U . 定义 p 处的光光光滑滑滑函函函数数数芽芽芽为下述 colimit：

C∞
p (M) = lim−→ p∈U⊂M C∞(U)

=
∐

p∈U⊂M

C∞(U)/
{
(f, U) ∼ (g, V ) ⇔ ∃W ⊂ U ∩ V s.t. f |W = g|W

}
.

函数芽精准地描述了如何关注局部性质这件事，最直观的一条性质是当把 M 换

成任意 p 附近的一个开集时余极限得到的结果不变. 当然我们也可以类似定义连续函

数芽 Cp(M)，全纯函数芽 Op(M) 等等，在后续讨论层论时我们会给一个更广泛的

定义. 有了上述准备后，我们给出切空间的下述代数定义：
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Definition 1.2.7 (切空间：代数定义). 给定 n 维光滑流形 M 与 M 上一点 p，定

义切切切空空空间间间 TpM 为全体 C∞
p (M) → R 的导子. 选定一组局部坐标 φ : U → V ⊂ Rn，

则 φ 给出下述从 TpM 到 Rn 的同构：

TpM TpU TpV TpRn ∼= Rn

D [f 7→ D(f ◦ φ)]

∼

此处同构性是因为 φ 是微分同胚，容易由交换图表验证该定义满足相容性.

使用以上几种定义，我们都可以来定义光滑映射的微微微分分分，或者说切切切映映映射射射. 我们

粗略提及所有构造方式.

Definition 1.2.8 (光滑映射的微分). 给定光滑流形 M,N 之间的光滑映射 f :M →

N . f 在点 p ∈M 处的微微微分分分被定义为线性映射 df |p : TpM → Tf(p)N .

• 泛性质定义：对任意一组 p, f(p) 附近的局部坐标 φ : p ∈ U → V 和 ψ : f(p) ∈

U ′ → V ′，下述交换图表

TpM Tf(p)N

Rnφ Rmφ′

∼ ∼
d(ψfφ−1)|φ(p)

唯一确定了一个从 TpM 到 Tf(p)N 的线性映射. 我们可通过链式法则验证该定

义和局部坐标的选取无关.

TpM Tf(p)N

Rnφ Rmψ

Rnφ′ Rmψ′

∼
∼

∼
∼d(ψfφ−1)|φ(p)

d(φ′φ−1)|φ(p) d(ψ′ψ−1)|ψ(p)

d(ψ′fφ′−1)|φ′(p)

• 几何定义：对任意一条曲线 γ : [−a, a] → M 满足 γ(0) = p，f ◦ γ 是 N 上的

一条过 f(p) 的曲线. 定义我们就把 [f ◦ γ]（表示 (f ◦ γ)′(0)） 定义为 [γ]（表示

γ′(0)） 在 df |p 下的像.

• 代数定义：f 诱导出函数芽上的拉回 f∗ : C∞
f(p)(N) → C∞

p (M)，对每个 p 处的

导子 D 定义 df |p(D) = D ◦ f∗，即

(df |p)(D)(α) = D(α ◦ f).

可以验证 df |p(D) 是 f(p) 处的一个导子.

上面的定义都可以来证明下面重要的：
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Proposition 1.2.9 (链式法则：微分映射的函子性). 设 M,N,P 是光滑流形，f ∈

C∞(M,N)，g ∈ C∞(N,P )，则

d(g ◦ f)|p = dg|f(p) ◦ df |p.

特别地，如果 f 是光滑同胚，则对任意 p ∈M 均有 df |p 是线性同构.

特别地，考虑将坐标卡映射 φ : U → V ⊂ Rn 看作子流形之间的光滑同胚，则

dφ|p : TpM = TpU
∼→ TpV = TpRn ∼= Rn 就给出了在一组局部坐标下切空间 TpM 如

何被等同到标准欧氏空间. 在线性代数下这相当于选取了一组基，因此当我们选取了

M,N 中的两个坐标卡后，可以谈论微分 df |p 关于它们的 Jacobi 矩阵.

1.2.2 切丛与可定向性

当我们规定了所有点处的切空间时，可以把它们沿 M 粘为一个整体（用外蕴切

空间来看更为直观），得到的结果被称为切切切丛丛丛. 为此，我们先引入向量丛的概念：

Definition 1.2.10 (向量丛). 设 E,M 都是拓扑空间，π : E → M 是连续的满射，

且对任意点 p ∈M， Ep := π−1(p) 都是 r 维线线线性性性空空空间间间. 若下述相容性条件成立：

对任意 p ∈M，存在 p 的开邻域 U 以及同胚映射

Φ : π−1(U) → U × Rr

使得对任意 q ∈ U，Φ|Eq 是从 Eq 到 {q} × Rr 的一个线性同构，

则称三元组 (π,E,M) 是一个向向向量量量丛丛丛，E 为该向量丛的全空间，M 为该向量丛

的底空间，π 为丛投影映射，r 为该向量丛的秩，每个 Eq = π−1(q) 为该向量丛在点

q 处的纤维，并称 Φ 为该丛的局部平凡化映射。在不引起混淆的情况下，简称 E 是

M 上的向量丛，或者 E 是向量丛。

若 (π,E,M) 是一个向量丛，其中 E 和 M 都是光滑流形，丛投影映射 π :

E → M 是光滑映射，且上述定义中的局部平凡化映射 Φ 都可取为微分同胚，则称

(π,E,M) 是一个光光光滑滑滑向向向量量量丛丛丛。在不引起混淆的情况下，简称 E 是 M 上的光滑向量

丛，或者 E 是光滑向量丛。

虽然在上述定义中我们要求事先选取光滑流形 E，但是在实际构造过程中，我

们更多是先作为集合定义出 E，给出所有局部平凡化映射，然后通过要求这些局部

平凡化映射都是拓扑同胚来为 E 定义一组拓扑基. 如果 M 是光滑流形，那么我们

可选取 U 同时是坐标卡且局部平凡，这样 U 上的坐标卡映射 ϕ : U → V ⊂ Rm 可

给出

π−1(U)
Φ−→U × Rn ϕ×id−→ V × Rn ⊂ Rm+n

这样就为所有 π−1(U) 赋予了相容的坐标卡结构，由于全体 π−1(U) 给出 E 的开覆

盖，这为 E 赋予了光滑流形结构，并使 Φ 成为光滑映射.

根据上述讨论，我们可以定义切丛的概念.
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Definition 1.2.11 (切丛). 一个流形 M 对应的切切切丛丛丛 TM 在集合层面上为

TM =
∐
p∈M

TpM = {(p,v) : p ∈M, v ∈ TpM}.

考虑投影映射

π : TM →M, (p,v) 7→ p

通过要求对每个光滑坐标卡 ϕ : U → V ⊂ Rn，使

Φ : π−1(U) → U × Rn, (p,v) 7→ (p,dϕ|p(v))

成为光滑映射，我们可为 TM 赋予一个光滑结构，使之成为光滑流形.

考虑两个坐标卡 ϕi : Ui → Vi，则坐标卡转移映射在其相交部分的每点处都诱导

了切空间上的同构，由此也诱导了

(U1 ∩ U2)× Rn → (U1 ∩ U2)× Rn, (p,v) 7→ (p,d(ϕ2ϕ
−1
1 )|pv).

这些自同构 d(ϕ2ϕ
−1
1 )|p 在 GLn(R) 中关于 p 有光滑性.

有了切丛的概念之后，我们也可以把微分映射丛一点附近搬到整个切丛上来：

Definition 1.2.12 (微分). 设 f :M → N 是光滑流形之间的光滑映射，则

df : TM → TN, (p,v) 7→ (f(p),df |p(v))

是光滑流形之间的光滑映射，称为 f 所对应的微微微分分分.

在一组局部坐标系下，df 的前 n 个坐标映射分别为 fi，后 n 个坐标映射分别

为

(p,v) 7→
∑
i

∂fi
∂xj

∣∣∣∣
p

· vi

根据 f 的光滑性，这是关于 p 和 v 的光滑函数.

定义切丛最大的好处是它允许我们在整个 M 上而不只是在一点处讨论切空间，

它描述了切向量如何光滑地在 M 上运动. 在物理中我们经常提到场场场的概念，标量

场可以看作光滑函数，而向量场/矢量场就是要在每点处选择一个向量并使得它们在

M 上连续/光滑. 下面的定义就描述了在向量丛上“场”的光滑性.

Definition 1.2.13 (截面). 设 (π,E,M) 是一个（光滑）向量丛. 若（光滑）映射

s : M → E 满足 π ◦ s = idM，则称 s 是向量丛 (π,E,M) 上的一个（（（光光光滑滑滑）））截截截面面面.

将全体截面构成的集合记作 Γ(E)，全体光滑截面构成的集合记作 Γ∞(E).

Example 1.2.14. M 上有非常多的几何对象和向量丛与截面有关.
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• 切丛上的光滑截面也被称为光滑向量场. 给定一个光滑向量场，我们就能描述

一个点在该场内的运动过程，考虑运动的轨迹会给出一些曲线，这些曲线在每

点处对应的切向量恰好就是光滑向量场在该点处的取值. 这些曲线被称之为向

量场诱导出的流. 它不仅可用来描述物理现象，同时也带来很多有趣的理论应

用. 后文讨论的齐性引理 1.3.48 和 Morse 理论中的定理 1.4.26 即是两例.

• 在古典曲面论中，我们可在每点处考虑垂直于切空间的法向量. 每点处的全体

法向量构成 1 维线性空间，它们可给出一个向量丛，称为法丛. 由此我们可以

讨论光滑法向量场的概念. 回忆在曲面论中我们称一个曲面是可定向的，如果

在曲面上存在光滑单位（或者非零）法向量场. 比如一个球面是可定向的，而一

个 Möbius 带是不可定向的.

• 更加抽象的例子：我们可在每点附近考虑切空间上的对称正定双线性型 TpM ×

TpM → R 构成的空间（并不是线性空间，但可以作类似讨论），对每个局部坐标卡

我们可以作局部平凡化映射，把这些切空间都等同为 Rn，并在 Matn×n(Rn)

上讨论连续/光滑性. 我们可以以此为资料类似定义一个丛，这个丛的光滑截面

被称为 M 的 Riemann 度量. 我们容易证明根据单位分解，我们可在每个局

部选取欧氏空间的一个诱导度量，然后将其拼起来给出整个 M 上的 Riemann

度量.

我们接下来讨论可定向性的概念. 在一般的光滑流形上法向量不是一个内蕴的概

念，我们只能借助切空间来给出类似的想法. 在 3 维空间中直观的一个想法是法向量

通过右右右手手手定定定则则则给出了平面上的一个顺时针/逆时针旋转，这就将平面赋予了两种不同

的方向. 我们可用多种方式将这样的想法严格化，一种容易理解的方式是利用所谓标标标

架架架的概念：在内积空间 Rn 中，每组（有序）基 (e1, e2, . . . , en) 给出一个 Rn 中的标标标

架架架，由标准基 (x1, . . . , xn) 给出的标架称为标标标准准准标标标架架架.（在 3 维空间中想象这些标架非常

直观.） 这些标架在差一个坐坐坐标标标变变变换换换的意义下可以相互到达，由于坐标变换矩阵是可

逆矩阵，因此我们可以讨论其行列式的正负性. 如果两个标架能通过一个行列式为正

的坐标变换像相互到达，就称他们处于同一个标架类中，这显然给出一个等价关系.

和标准标架在同一个等价类里的被称为正标架类，反之称为负标架类. 选取了标架类

的线性空间被称为定向线性空间. 现在给定 Rn+1 中第 0 个分量上的单位向量，将其

视为法向量，那么我们就唯唯唯一一一确确确定定定了后 n 个分量张成超平面上的一个标架类，使得

把该法向量添加在该标架类的第一个分量上给出 Rn+1 的一个正标架类. 这样我们就

用 Rn 上的正负标架类来刻画了法向量的正反关系.

回到流形上来，我们希望在每点的切空间处选取一个标架类，使得每点附近的

标架类定向相同. 对切空间本身来说不存在标准标架的概念，但切空间上的标架仍然

恰好构成两个等价类，因此我们只需钦定等价类. 局部的相容性是容易定义的，因为

我们可以利用坐标卡映射把整个标架推出到欧氏空间中，这就使得我们可以在同一

个空间中谈论这些标架是否属于同一标架类中. 总结一下，我们给出下述定义：
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Definition 1.2.15 (流形定向：标架类定义). 设 M 是一个光滑流形，如果我们可

在每点 p 的切空间 TpM 上选取一个标架类 Ep，使得在任意坐标卡映射 φ : U →

V ⊂ Rn 下，对任意 q ∈ U 均有 dφ|q(Eq) 和 dφ|p(Ep) 标架类相同，则将其称之为

M 的一个定定定向向向. 如果 M 存在定向，则称 M 是可可可定定定向向向光滑流形.

如果存在一个好的标架类选取方式，那么我们总是可以在每点附近选择一个坐

标卡，使得将这点处的标架推出到欧氏空间后和标准标架定向相同. 所有这些坐标卡

构成了 M 的一个开覆盖，并且如果两个坐标卡相交，在它们相交部分的坐标变换会

把一个标准标架保保保定定定向向向地地地送到另一个标准标架，也就是说：

det d(φ2 ◦ φ−1
1 )|φ1(p) > 0, p ∈ φ1(U1 ∩ U2).

反之，如果这样的一族坐标卡覆盖存在，那么我们可用坐标卡映射在每点处任意拉

回某个坐标卡上的标准标架，所得结果在差一个标架类的意义上是相同的. 这就意味

着我们可在每点处找一个标架类使得局部相容性成立. 所以这两种定义是等同的，这

样我们就得到了微分流形定向的标准定义，它可以完全不涉及到标架或者向量丛的

语言来称述.

Definition 1.2.16 (流形定向：坐标卡定义). 设 M 是一个光滑流形. 称 M 上的两

个坐标卡是定定定向向向相相相容容容的，如果它们相交部分上的转移映射在每点处诱导出的微分映

射行列式恒正，这时我们也称该转移映射是保保保定定定向向向的. 若 M 上存在一个光滑图册，

使得图册内任意两个坐标卡都是定向相容的，则将其称为 M 上的一个定定定向向向. 若 M

上存在定向，则称其为可定向流形.

上述的两个定义可以显然推广到任意向量丛上，即我们说一个向量丛是可定向

的，如果在每点的纤维上可以选取一个标架使得局部相容性成立，或者适当选取局

部平凡化映射使得所有转移映射都是保定向的. 那么流形的可定向性与流形所对应切

丛的可定向性本质上是相同的.

我们可以简单地继续向下讨论. 上述利用标架的定义还有更技术化的方式，对

一个 n 维线性空间 V 我们可以讨论其最最最高高高阶阶阶外外外幂幂幂
∧n

V，它是一个一维线性空间.

它和法向量的功能完全类似，因为一个标架自动被对应到
∧n

V 上的一个非零向量，

两个相同定向标架之间差一个正常数，相反定向标架之间差一个负常数. 在欧氏空间

中，借助标准标架我们能自然地把
∧nRn 等同为 R. 于是我们可以把某个局部坐标

卡上的
∧n

TpM 都等同到 R，现在它们定向相容当且仅当它们的符号都相同，这等

价于它们均非零（由连续性保证）. 于是我们只需处处非零性成立，这允许我们非常

简单地称述定向的定义：

Definition 1.2.17 (流形定向：最高阶外幂定义). 设 M 是一个光滑流形，考虑切

丛 TM 可诱导出最高外幂切丛
∧n

TM . 我们将
∧n

TM 的一个处处处处处处非非非零零零的光滑截

面称为 M 的一个定定定向向向. 若 M 存在定向，则称其为可定向流形.
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Remark. 该定义实际上是常见的，只不过我们一般用余切空间的 n 次外积
∧n

T ∗M

来定义.
∧n

T ∗M 上的光滑截面被称为 n-形形形式式式，而处处非零的 n-形式又被称为体体体积积积

形形形式式式. 所以流形可定向当且仅当存在体积形式.

同样地，该定义可以对任意向量丛称述，我们一般把其最高阶外幂生成的丛称

为行行行列列列式式式丛丛丛（determinant bundle）.

如果在 M 上赋予 Riemann 度量，那么我们就可以讨论切向量的模长，进一步

也能在 n 次外积空间中讨论模长. 如果在
∧n

TM 上存在处处非零的光滑截面 s，那

么 s/ |s| 就会给出所谓单位光滑截面. 而由于
∧n

TpM 是一维的，因此它上面就恰好

存在正负两个单位向量.当一个连通流形可定向时，在某点处确定一个
∧n

TpM 上的

单位向量会通过光滑性来唯一确定每点处的一个单位向量，从而唯一确定一个单位

光滑截面. 在这个意义上流形恰好存在两个定向. 对一般的向量丛，我们都可以通过

寻找度量的方式来给出该向量丛所对应的一个单单单位位位球球球丛丛丛，并将向量丛的可定向性和

球丛的可定向性联系起来. 一维向量丛对应的球丛每点处的纤维为 S0，是恰含两个

点的离散集. 此时球丛也给出了底流形 M 上的 2 叶叶叶覆覆覆叠叠叠. 根据刚刚的讨论，向量丛

可定向当且仅当这个 2 叶覆叠是平凡的，因为两个光滑截面恰好把球丛分割为两个

不同的连通分支. 反之，如果 M 不可定向那么在 M 上一定存在一个非平凡的 2 叶

覆叠. 特别地我们得到下述结论：

Proposition 1.2.18. 单连通（我们暂时要加上光滑）流形一定是可定向的.

这又引向了流形可定向性和流形本身的拓扑性质之间的关系. 实际上对一般

拓扑流形，借助最高阶同调群我们可以模仿上面的精神在每点处定义局局局部部部定定定向向向为

Hn(M,M − p;Z) ∼= Z 的两个生成元之一，对紧流形来说 Hn(M) 的生成元就对应

一个流形的定向，称为 M 的一个基基基本本本类类类. 坐标卡映射结合切除定理仍然可用来定

义局部相容性，于是我们会去类似讨论以 Hn(M,M − p;Z)（或者其生成元）作为纤

维的定定定向向向丛丛丛，并以定向丛的截面来定义整体的可定向性. 我们会发现可定向性和流

形的最高阶同调高度相关，并且还给出了 k 阶同调和 n − k 阶上同调之间的对偶关

系，称之为 Poincaré 对对对偶偶偶. 对光滑流形而言，我们可以完全用微分形式所给出的

de Rham 上上上同同同调调调的语言来描述这一对偶关系.

值得一提的是我们也可以把 Z 换成任意的环 R 去定义 R-可定向性，不过它们

都能被一般的 Z-可定向性信息完全确定. 但这仍然会给出非平凡的理论，因为我们

会知道任何流形都是 Z2-可定向的，从而在 Z2 系数下仍然有对偶性及很多命题成立.

在流形理论中，我们经常会在不假设可定向性的条件下见到 mod 2意义下的不变量，

在假设可定向性时才会给出 Z-不变量. 这里解释了在拓扑层面上为什么这样的现象

会产生.
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1.2.3 复切空间和代数簇上的切空间

我们接下来将把上面的定义扩展到 Riemann 面上，这个定义对一般的复流形也

是适用的. Riemann 面是一一一维维维复复复流流流形形形，因此我们期望它具有一一一维维维复复复切切切空空空间间间. 在复情

形下外蕴的直观变得很微弱（我们甚至无法想象 C2），如果我们要用曲线的方法定义切

空间，则会得到所谓“复曲线”γ : C → X 的等价类. 这种方法虽然可以走通，但仍

然不直观. 最好的方式就是用代数方法逐字地翻译定义.

Definition 1.2.19 (复切空间). 给定 Riemann 面 X 与 X 上一点 x，定义复复复切切切空空空

间间间 TC
pM 为全体 Op(X) → C 的导子（满足复复复线性和 Leibniz 法则）.

我们先考虑 C 上开集 V 的复切空间结构，并证明它是复一维的. 首先根据复导

数的定义，
∂

∂z
是一个满足要求的导子.（注：我们暂时不要把它想象和实导数有关系，它就

是一个可以良定义在全纯函数芽上的算子）

另一方面，对任意导子 D，首先对常值函数芽 [c] ∈ Op(V ) 有 D([c]) = 0. 另一

方面，对任意 [f ] ∈ Op(V )，它可在 p 附近的邻域 N 内展开为

f(z) = f(p) + f ′(z) · (z − p) + g(z) · (z − p)2.

其中 g 解析.因此根据 Leibniz法则可知 D((z−p)2) = D(z−p) ·0+0 ·D(z−p) = 0，

所以

D(f) = f ′(z)D(z) +D(g) · 0 + g(p) · 0 = f ′(z)D(z) = D(z) · ∂f
∂z
.

这里解析性使得我们比实情形的讨论要容易很多. 所以复切空间就是由
∂

∂z
张成的一

维复线性空间，通过选取局部坐标卡带来的解析同胚，这就说明了我们定义的 TC
pM

也是复一维的.

我们知道 Riemann 面也能被自然地视为实二维光滑流形，因此它对应一个二维

实线性切空间 TR
pM . 我们希望在 Riemann 面的研究中同时利用它作为实流形与复

流形的性质，因此需要在这两个切空间中建立联系.（比如我们在复变函数中总是考虑全

纯函数（实际上是 1-form）沿一条实实实曲曲曲线线线的积分，这就强迫我们就把它单纯看作“复化”了的曲

线积分；比如我们只能在光滑范畴中进行单位分解等等）

还是先回到 C 中看问题：它作为实平面在 p 处的二维实切空间的一组基是
∂

∂x

和
∂

∂y
. 我们的第一个观察是这两个算子都可以实现为 Op(X) → C 的导子，此时

∂f

∂x
= lim

λ→0

f(p+ λ)− f(p)

λ
=
∂f

∂z
;

∂f

∂y
= lim

λ→0

f(p+ λi)− f(p)

λ
=
∂f

∂z
· i.

因此我们也可以说
∂

∂x
或者

∂

∂y
给出了一维复切空间的基，但是这种说法就比较奇

怪，我们可以换一个角度去想这件事：全纯函数芽 Op(X) 是光滑函数芽 C∞
p (X) 的
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“让导子等同关系出现”的子空间. 实际上这就是我们考虑 Cauchy-Riemann 方程时

的进路，让我们把它严格化：

首先我们这里考虑的光滑函数芽其实是 C∞
p (X,C)，考虑的导子是 C∞

p (X,C) →

C 的复线性导子. 注意它可以在实流形上定义，得到的结果不过是实切空间的复化

TR
p X ⊗ C，我们把它称之为复复复化化化切切切空空空间间间. 对 X = V ⊂ C，我们得到一个二维复线性

空间，它的一组基是
∂

∂x
和

∂

∂y
. 如果我们定义

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

那么
∂

∂z
和

∂

∂z
也构成 TR

p V ⊗ C 的一组基.

现在回到复流形上，TR
p X ⊗ C 在不同坐标卡上的展现之间相差一个解析映射 f .

我们将它视作光滑映射，这样可以讨论它在复化切空间上的行为. 设 f = u+ iv，那

么它的转移矩阵为 
∂u

∂x

∣∣∣∣
p

∂u

∂y

∣∣∣∣
p

∂v

∂x

∣∣∣∣
p

∂v

∂y

∣∣∣∣
p

 =

 a b

−b a

 .

即它可视为一个复一维线性映射忘记复结构后视为实线性映射的结果. 在复化切空间

下转移映射对应的矩阵相同，但此时就能进行对角化：我们可以验证
∂

∂z
和

∂

∂z
分

别是它的两个特征向量.

这就导致复化切空间存在一个典范的直和分解：

TR
p X ⊗ C = T (1,0)

p X ⊕ T (0,1)
p X.

使得在任任任何何何局部坐标 z 下，T
(1,0)
p X 对应到 C · ∂

∂z
，T

(0,1)
p X 对应到 C · ∂

∂z
；并且

对任何全纯映射 f : X → Y，作为实微分映射的 df |p 把 T
(1,0)
p X 映到 T

(1,0)
f(p) Y，把

T
(0,1)
p X 映到 T

(0,1)
f(p) Y .

最后，复化切空间中 T
(0,1)
p X 部分在全纯函数芽上作用的结果恒为零，而 T

(1,0)
p

部分导子的作用效果互不相同，于是我们就可以把 T
(1,0)
p 作为 Riemann 面面面的的的复复复切切切

空空空间间间，并且可以定义复意义下的微分映射 df |Cp : T
(1,0)
p → T

(1,0)
f(p) ，它就和我们一开始

利用全纯函数芽给出的定义吻合.

为了加深对上述讨论的理解，我们说明下述命题成立：

Proposition 1.2.20. 复流形（作为实光滑流形）总是可定向的. 特别地，所有 Rie-

mann 面都是可定向 2 维流形.

Proof. 我们采用转移函数的定义，证明可以理解为是纯线性代数的：对任意转移映

射 f，df |Cp 诱导出 n 维复线性空间的自同构 df |Cp : Cn → Cn（对应 TC
p），我们暂且

把这里的 Cn 记作 V . 将其忘记复结构得到 2n 维实线性空间，我们可以证明作为实

线性映射 df |Rp : VR → VR（对应 TR
p），有

det df |Rp =
∣∣det df |Cp ∣∣2 > 0.
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这是因为 df |Rp 定义在复化空间 VR ⊗ C（对应 TR
p ⊗ C ） 上给出的映射行列式和在 VR

上是等同的，而在复化空间上 df |Rp 有两个不动子空间（对应 T
(1,0)
p 和 T

(0,1)
p ），并且

在这两个空间上的映射恰好同构于 df |Cp 和 df |Cp . 于是 det df |Rp = det df |Cp ·det df |Cp，

这就证明了结论. （值得一提的是，该线性代数命题是笔者第一学期高等代数的期末题目.） 所

以任意选定复坐标卡，它们之间的转移映射都满足行列式恒正，从而一定是定向相

容的，这就给出了复流形的一个定向.

我们可以类似证明如果将复向量丛（其转移映射在每个纤维上都给出复线性同构）视

为实向量丛，其转移映射行列式也恒正，从而复向量丛也总是可定向的. 类似之前对

定向性的多种定义，我们也可以考虑用复切丛对应的行列式丛是否平凡来定义可定

向性（ref. 定义 1.2.17），或者考虑全全全纯纯纯体积形式的存在性. 用这种方法定义出的可定

向性闭上述“实定向性”要强很多，比如它可以推出该复流形的第一个 Chern 类为

零，从而给出一个自自自旋旋旋结结结构构构. 存在全纯体积形式同时也定义 Calabi-Yau 流形的必要

条件.

我们接下来在仿射簇上定义切空间. 研究仿射簇的切空间同样有内蕴和外蕴两种

视角，但在这之前我们需要先讨论何为内蕴定义——因为我们在 1.1.3 节初步讨论仿

射簇性质时总是把它视为某个 kn 中的多项式理想零点集.

在抽象的仿射簇中，核心观点是把点替换成极大理想，这样就可以完全在环层

面上讨论问题而不需要把点对应于某个坐标.

Definition 1.2.21 (仿射簇：抽象定义). 一个仿仿仿射射射簇簇簇是一个三元组 (X,OX , k[X])，

其中:

• A = k[X] 是一个有限生成既约 k-代数（称为坐坐坐标标标环环环）;

• X = MaxSpec(A) 是 A 的所有极大理想组成的集合;

• OX 是 X 上的结结结构构构层层层，对每一点 P ∈ X，它在每点处的纤维（茎）为局局局部部部环环环

OX,P = AmP

其中 mP 是对应于 P 的极大理想.

Remark. 我们在该讲义中没有解释过什么是层层层，但我们解释过函数芽 1.2.6和向量丛

1.2.10 的定义，它们可帮助我们理解层结构. 拓扑空间 X 上的层结构为每个 X 中的

开集 U 赋予一个对象 F (U)，比如我们以环对象为例，使得相互包含的开集 U ⊂ V

之间有“自然”的限制同态 Res |U : F (V ) → F (U). 此外，还需满足局部性公理（若

两个定义在大开集上的对象在某个开覆盖中的任意小开集上都等同，那么它们也等

同）与粘合公理（如果能在某个开覆盖的每个开集上拣取一个对象使得它们两两在

相交部分上的限制等同，那么他就能定义整体上的一个对象）. 流形上的光滑函数芽

层是层的典范例子，我们只用靠它来提供直观.
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给定 A 的一组生成元 a1, . . . , an，我们就能通过满同态 k[x1, . . . , xn] → A, xi 7→

ai 来定义出 I(X) ⊂ k[x1, . . . , xn]，从而给出了 X 在 kn 中的嵌入. 仿射簇可以通过

不同的方式嵌入到不同维数的仿射空间中.

对于接下来的讨论，我们只用从上面的定义提取出坐标环和局部环是只和仿射

簇本身有关的性质. 先从外蕴切空间开始.

Definition 1.2.22 (仿射簇上的切空间：外蕴定义). 给定仿射簇 X ⊂ kn 与 V 上一

点 p = (x1, . . . , xn). 设 X 对应于理想 a. 定义 p 处的（外蕴）切切切空空空间间间为

TpX = {v = (v1, . . . , vn) : df |p(v) =
n∑
j=1

∂f

∂xj

∣∣∣∣
p

· vj = 0, ∀ f ∈ a}.

这很好理解：X 是 a 中全体多项式的零点集，所以这些多项式沿 X 上任意曲

线的取值变化率均为 0，进而导致切空间就由使得所有多项式在该点求偏导都为零

的向量构成. 注意这里 f 都是 k[x1, . . . , xn] 中的多项式，我们可以定义形式偏导数，

从而可以定义所谓“微分映射”. 根据线性和 Leibniz 法则，如果 a 由有限个多项式

f1, f2, . . . , fm 生成，那么我们只需验证有限个多项式对应的微分映射在 v 上的取值

为零.

df |p(v) = 0, ∀ f ∈ a ⇔ dfi|p(v) = 0, i = 1, . . . ,m.

由于每个 dfi|p 的核维数是余一维的，故此时切空间的维数至少为 n−m.

接下来考虑利用导子的定义. 标准的方法是用局部环 OX,p 对应欧氏空间中的光

滑函数芽，因为 p 处的切空间本质上只和 p 附近的局部信息有关.

Definition 1.2.23 (仿射簇上的切空间：内蕴定义). 给定（抽象）仿射簇 X 与 X

上任意一点 p，定义点 p 处的切切切空空空间间间 TpX 为全体导子 D : OX,p → k. 具体而言，D

满足

• k-线性：D(af + bg) = aD(f) + bD(g) 对任意 f, g ∈ OX,p 成立.

• Leibniz 法则：D(fg) = f(p)D(g) + g(p)D(f) 对任意 f, g ∈ OX,p 成立.

注意根据局部环的定义，在同一个等价类中的元素在 p 点处取值是相同的.

我们也可以将上述定义中的 OX,p 替换为坐标环 A，然后定义 p处的切空间为全

体 A → C 的导子，其中双模结构为 f · c = f(p)c. 这样的导子被称为 p 处的整整整体体体导导导

子子子. 这是因为给定一个 A 上的导子，我们可以将其通过扩展的 Leibniz 法则为所有

f/g 定义

D(f/g) =
D(f)g(p)− f(p)D(g)

g(p)2
.

可以验证这延拓为了 OX,p 上的一个导子. 另一方面，局部环上的一个导子通过限制

映射直接给出了整体导子.
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Remark. 只有在仿射簇上这两种定义才是等同的，而对一般的代数簇只有局部环定

义是可行的.

Example 1.2.24. 我们可以把目光聚焦在在 p 处取值为零的那些 Op,X 中元素，即

考虑 TpX 在 mp ⊂ A ⊂ OX,p 上的 k-线性函数. 此时我们发现 Leibniz 法则告诉我们

对 f, g ∈ mp 总有 D(fg) = 0，从而对任意 f ∈ m2
p 都有 D(f) = 0. 另一方面，对

任意 f ∈ OX,p 都有 f − f(p) ∈ mp，而在差一个常数的意义下导子作用不变. 于是在

mp/m
2
p 上定义的 k-线性函数可复原为 OX,p 上的一个导子. 于是我们可以说

TpX ∼= (mp/m
2
p)

∗.

这一想法对微分流形和复流形也是成立的. 在一些教材中我们会先把余切空间定义为

mp/p
2，再将切空间定义为其对偶空间.

在光滑流形和复流形中，每点处的切空间维维维数数数是相同的，并且它们均对应于流

形本身的维数. 然而在仿射簇上，首先要定义其维数就并不容易，其次并不是所有点

处切空间维数都和仿射簇的维数相同.

Definition 1.2.25 (仿射簇的维数). 对一个仿射簇 X，其维数 dimX 有以下几种

等价的代数定义：

1. 坐坐坐标标标环环环的的的 Krull 维维维数数数：dimX 定义为坐标环 A(X) 的 Krull 维数，即素理想

链的最大长度：

dimA(X) = sup{n | p0 ⊂ p1 ⊂ · · · ⊂ pn ⊂ A(X) 为素理想链}

2. 超超超越越越次次次数数数：若 X 是仿射簇，其有理函数域 K(X) 是有限生成域扩张 k ↪→

K(X)，则

dimX = tr.degkK(X)

即域扩张的超越次数.

3. 几几几何何何维维维数数数：在代数闭域上，dimX 等于 X 到仿射空间的一般有限满态射的像

的维数，或等价于 X 中不可约分支的最大维数。

我们可以证明作为 Krull 维数有

dimA(X) = dimOX,p, ∀ p ∈ X.

于是根据切空间的代数定义，

dimTpX = dim(mp/m
2
p) ≥ dimOX,p = dimX.

由此我们可为 X 上的点分类.

Definition 1.2.26 (光滑点和奇异点). 给定仿射簇 X. 称 X 上一点 p 为光光光滑滑滑点点点，

如果有 dimX = dimTpX 成立. 称 p 为奇奇奇异异异点点点，如果有 dimX < dimTpX 成立.
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事实上，光滑点正如其名，我们有如下的结论成立：

Proposition 1.2.27 (光滑点构成流形). 设 X ⊂ kn 是一个仿射簇. 当 k = R 时，

X 上的全体光滑点（在欧氏拓扑下）构成一个光滑流形. 当 k = C 时，X 上全体光

滑点（在标准拓扑下）构成一个复流形. 流形的维数就等于仿射簇的维数 dimX.

Example 1.2.28. 考虑 char k = 0. k2 上由 y2 − x3 = 0 定义的曲线 X，则 A(X) =

k[x, y]/(y2 − x3). 考虑其对应的有理函数域 K(X)，令 t = y/x ∈ K(X)，则 t2 =

y2/x2 = x 而 t3 = y3/x3 = y3/y2 = y. 因此有理函数域 K(X) 可以由一个变元 t 所

单生成，这导致我们有 dimX = 1.

另一方面，考虑每点处的切空间维数. 由于 I(X) 仅由 f(x, y) = y2 − x3 定义，

因此

dimTpX = dimker df |(x,y) =

1, ∇f |(x,y) ̸= 0;

2, ∇f |(x,y) = 0

.

而 ∇f = (−3x2, 2y)，所以对任意 p ̸= (0, 0) 都有 dimTpX = 1 而对 p = (0, 0) 有

dimTpX = 2. 所以该曲线在 (0, 0) 处为光滑点. 若取 k = R，则在零点附近 X 形如

下图：

而当 k = C 时，

Φ : C− {0} → X, t 7→ (t2, t3)

给出了从 C − {0} 到 X 中全体光滑点的解析同胚. 这也就是说，作为 Riemann 面

X − (0, 0) 解析同胚于 C− {0}.

接下来我们来仔细研究一些奇异点附近的几何. 是实情形下奇点可能只会展现为

图像上的一处非光滑，然而在复空间上情况大有不同. 比如说考虑 C2 上的某条代数

曲线的孤立奇点 p，我们可考虑足够接近 p 的一个球面（视为实 3 维球面 S3）与代

数曲线的图像相交所得的结果，其图像应当是 S3 上的一个实实实一一一维维维流流流形形形. 一维流形

本身没有什么可研究的，但是它嵌入在 S3 中，有非常丰富的纽结理论（初步介绍可见

1.4.14 最后的部分），而奇点附近的几何就会给出一维流形在三维空间中缠绕的例子.

我们下举两例.

Example 1.2.29. 考虑曲线 X : xy = 0. 在 k = R上曲线的图像就是两条相交直线，

没有值得研究的. 而当 k = C 时，我们用 S3
δ = {(x, y) : |x|2 + |y|2 = δ2} 与 X 相交
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可得

S3
δ ∩X = {(x, 0) : |x| = δ} ∪ {(0, y) : |y| = δ}

= {(δ cos θ, δ sin θ, 0, 0) : θ ∈ R} ∪ {(0, 0, δ cosφ, δ sinφ) : φ ∈ R}.

是两个分离圆周之并，分别记为 Kx 和 Ky. 为了方便看清它们之间的结构，我们将

S3
δ 球极投影为 R3 ∪ {∞}. 选取投影极点为 P = (0, 0, 0, δ) ∈ S3

δ，球极投影

π : S3
δ \ {P} −→ R3

定义为

π(x1, x2, y1, y2) =

(
δx1
δ − y2

,
δx2
δ − y2

,
δy1
δ − y2

)
. (1)

该映射是到 R3 的同胚，且 π(P ) = ∞.

将 Kx 和 Ky 的表达式分别代入 (1) 得 Kx 在球极投影下的像就是删去最后一个

坐标分量，即在平面 z = 0 上的圆 x2 + y2 = δ2. 而 Ky 的表达式会过点 (0, 0, 0, δ)，

剩下部分在球极投影下的像为

π(0, 0, δ cosφ, δ sinφ) =

(
0, 0,

δ cosφ

δ − δ sinφ

)
=

(
0, 0,

cosφ

1− sinφ

)
.

于是其像为整个 z 轴并上无穷远点，这就看出了这两个圈之间构成 Hopf 链环：这

两个圈在 S3 中被扣在一起无法分开.

Example 1.2.30. 我们接着例 1.2.28 讨论 X : y2 − x3 = 0 ⊂ C2. 考虑

S3
δ ∩X = {(t2, t3) : t ∈ C, |t|4 + |t|6 = δ2}.

根据模长表达式我们能反解出唯一的 ε > 0，于是上式可写作：

S3
δ ∩X = {(ε2e2iθ, ε3e3iθ) : θ ∈ R}.

由于整个 S3
δ ∩X 落在 {(z, w) : |z| = ε2, |w| = ε3} ∼= S1 × S1 上，这在 S3 上实现为

一个环面，因此 S3
δ ∩X 是一个能嵌入在环面中的纽结，其图像大概如下：

它被称为 (2, 3)-环面结，即我们熟知的三叶结,，因为它沿环面的横截面绕了两圈而

沿纵向切面绕了三圈. 我们能通过这种方法构建出多种不同的环面结.
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由这样的方法出发，我们可以考虑对仿射簇上的奇点进行分类，它被称作简简简单单单

奇奇奇点点点的的的 ADE 分分分类类类，它源于 1970 年代 Vladimir Arnold 对全纯函数芽的分类工作，

后来发现与 Dynkin 图，李代数表示论有深刻联系. 我们刚刚讨论的 y2 − x3 = 0 拥

有一个 A2 型奇点，属于所谓的尖尖尖点点点（cusp）奇点. 其它的一些例子比如

• x(y2 + x3) = 0 拥有一个 D5 型奇点，链环由一个分支和一个三叶结相连接.

• y3 + x5 = 0 拥有一个 E8 型奇点，其链环是 (3, 5)-环面结，也是正二十面体对

称性的纽结. 这是最简单的拓扑非平凡纽结之一.

更多内容在这里不再讨论.

1.3 局部性态与整体性态

1.3.1 反函数定理与局部性质

本节我们从欧氏空间中的反反反函函函数数数定定定理理理与与与隐隐隐函函函数数数定定定理理理出发，来研究流形上的局部

性态. 并寻求它和整体性态之间的联系. 首先我们有局部微分同胚的定义：

Definition 1.3.1 (局部微分同胚). 设 f :M → N 是光滑映射，p 是 M 上一点. 若

存在 p 在 M 上的邻域 Up 与 f(p) 在 N 上的邻域 Vf(p) 使得

f |Up : Up → Vf(p)

是光滑流形之间的微分同胚，则称 f 在 p 处是局局局部部部微微微分分分同同同胚胚胚.

数学分析中的反函数定理告诉我们：

Theorem 1.3.2 (反函数定理). 设 f : U → V 是欧氏空间开集之间的光滑映射，若

df |p 为线线线性性性同同同构构构，则 f 在 p 处是局部微分同胚.

其证明用到压压压缩缩缩映映映像像像定定定理理理，是数学分析中证明最困难的定理之一. 该定理可显

然地推广到微分流形上.

Theorem 1.3.3 (反函数定理：微分流形情形). 设 f : M → N 是光滑映射，p 是

M 上一点. 若 df |p : TpM → Tf(p)N 为线线线性性性同同同构构构，则 f 在 p 处是局部微分同胚.

从局部微分同胚到微分同胚其实差的也并不多，这是因为只要作为集合上的映

射 f−1 存在，那么它的连续性和光滑性都是局部性质，这都是局部微分同胚能保证

的. 因此如果可以证明 df |p 处处非退化，那么只要 f 是单射，那么 f 就是 M 到它

像集 f(M) 的微分同胚；只要 f 是双射，那么 f 就是 M 到 N 的微分同胚.

Example 1.3.4 (Riemann 面的情形). 给定 Riemann 面之间的解析映射 f : X →

Y，则只要 f 在某点处的微分映射非零（或者说在取定任意局部坐标后复导数为零），则

df |p : T
(1,0)
p M ⊕ T

(0,1)
p M → T

(1,0)
f(p) N ⊕ T

(0,1)
f(p) N 给出复化切空间之间的同构. 于是 f

在该点处是微分同胚.
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我们还需要研究微分映射不是同构的情形. 一般的一个微分映射 df |p : TpM →

Tf(p)N 会将一些方向消没（表现为这个方向上导数为 0），并将剩下的一些方向嵌入到

像集 Tf(p)N 之中. 线性代数的理论告诉我们对任意线性映射 T : V → W，V 和 W

的维数分别为 n 和 m，则只要 T 的秩 r 被确定，就可以选取 V 和 W 的一组基使

得在这组基下 T 对应的矩阵为

[T ] =

Ir×r 0

0 0

 : R1×n → R1×m.

下面的命题告诉我们，如果在局部上一个微分映射保持常常常秩秩秩，那么上述关于线性代

数的命题可以被显现在局部坐标上.（从一点性质变成了局部性质，但还不是整体性质）

Theorem 1.3.5 (常秩定理). 设 f : M → N 是光滑映射. 若点 p ∈ M 满足存在其

开邻域 U 使得对任意 q ∈ U 均有微分映射 df |q 的秩为 r，那么存在 p 和 f(p) 附近

的坐标卡 ϕ : U → V 和 ϕ′ : U ′ → V ′ 满足 f(U) ⊂ U ′，并使得

ϕ′ ◦ f ◦ ϕ−1 : V → V ′, (x1, . . . , xn) 7→ (x1, . . . , xr, 0, . . . , 0).

需要指出的是，之前关于反函数定理的论述可以实现为常秩定理的特殊情形. 这

是因为 df |p的非奇异性性质是具有稳稳稳定定定性性性的.简单来说，我们为 Matn×n(R)视为 n2

维欧氏空间，赋予拓扑结构，然后选取 p附近的一组局部坐标，可以证明 df |∗ : p 7→

df |p 是连续函数. 又因为判断非奇异性的函数 det : Rn×n → R 是连续函数，于是

(df |∗)−1 ◦det−1(R−{0})是 U 上的开集，所以 p处的非奇异性可推出 p附近微分映

射的非奇异性. 与之类似地，对长方形矩阵 A ∈ Matn×m(R)，“rkA = min{n,m}”

也是一个具有稳定性的性质，这是因为“是否有一个正方形子阵秩为 min{n,m}”

是稳定的. 反之对较小的秩显然没有稳定性成立，事实上满足“rkA = min{n,m}”

的矩阵在 Matn×m(R)上是稠稠稠密密密的，这也允许我们利用逼近的想法是证明一些线性代

数的命题.

常秩定理的证明就是研究 Jacobi 矩矩矩阵阵阵 来分别原像集和像集上更换坐标卡，比

较技术化. 我们关注的重点应在“为什么单点处的信息不足以完成证明”. 特别地，

我们也可以类比数学分析中隐函数定理的证明以及之后 Sard 定理的证明.

Proof. 显然问题可化归为欧氏情形，即有开集 U ⊂ Rn 与函数 f = (f1, . . . , fm) :

U → Rm 使得在每点处都有 rk df |p = r. 通过复合一个平移变换，我们不妨设 0 ∈ U

以及 f(0) = 0，则只需要在 0 附近选取坐标卡证明结论成立.

首先在 0 处 f 对应的 Jacobi 矩阵为

(
∂fi
∂xj

)
1≤i≤m, 1≤j≤n

. 由于其秩为 r，因此

上述矩阵存在一个 r × r 子阵可逆. 通过交换坐标（是微分同胚），我们可不妨设左

上角的 r × r 子阵可逆，即在后 n− r 个坐标固定的情况下 (f1, . . . , fr) 关于前 r 个

坐标给出局部同胚. 由此我们可以在原像集上选取一个坐标变换：

φ : U → Rn, (x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fr(x1, . . . , xn), xr+1, . . . , xn)
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φ 在每点处对应的 Jacobi 矩阵形如：
(
∂fi
∂xj

)
1≤i,j≤r

∗

0 I(n−r)×(n−r)


因此 φ 在 0 附近给出局部微分同胚，记为 φ : U1 → V1，其中 U1 ⊂ U . 设 V1 上的

坐标结构为 (y1, . . . , yn)，则 f ◦ φ−1 : V1 → Rm 形如

(y1, . . . , yn) 7→ (y1, . . . , yr, gr+1(y1, . . . , yn), . . . , gm(y1, . . . , yn)).

（这里右半边的 yi 应当视为把 y 打到其第 i 个分量的函数，和左边的意义不同.）由于 φ−1 是

局部微分同胚，故对任意 y ∈ V1 均有 rk d(f ◦ φ−1)|y = r，但是 f ◦ φ−1 在 y 处的

Jacobi 矩阵为 Ir×r ∗

∗ ∗


因此该矩阵的右下角 (m− r)× (n− r) 矩阵恒零，即

∂gi
∂xj

∣∣∣∣
y

= 0, ∀y ∈ V1, j = r + 1, . . . , n, i = r + 1, . . . ,m.

这即是说，当 y1, . . . , yr 固定时 gr+1, . . . , gm 和 yr+1, . . . , yn 的选取无关，于是它们

可看作仅关于 y1, . . . , yr 的函数. 而这个依赖关系可以完全在像空间上被体现出来，

因为只要知道一个像的前 r 的分量就能给出整个坐标. 因此，我们能在 0 附近选取

一个坐标变换

(z1, . . . , zm) 7→ (z1, . . . , zr, zr+1 − gr+1(z1, . . . , zr), . . . , zm − gm(z1, . . . , zr))

其 Jacobi 矩阵形如 Ir×r 0

∗ Im−r×m−r


于是它在 0 附近给出局部微分同胚. 现在

ψ ◦ f ◦ φ−1 : (y1, . . . , yn) 7→ (y1, . . . , yr, 0, . . . , 0).

这就给出了满足要求的局部坐标卡，证毕.

接下来我们再考虑 Riemann 面的局部性质. Riemann 面的局部性质要比一般微

分流形中强的多：只要一个解析映射非常值，那么它的局部性质就能被完全分类.

Proposition 1.3.6 (解析映射的局部性态). 设 f : X → Y 是 Riemann 面之间的

非非非常常常值值值解析映射. 则对任意 p ∈ X，存在 p 和 f(p) 附近的复坐标卡 ϕ : U → V 和

ϕ : U ′ → V ′ 满足 f(U) ⊂ U ′，使得

• ϕ(p) = 0, ϕ′(f(p)) = 0；
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• 存在某个 k 使得 ϕ′ ◦ f ◦ ϕ : V → V ′, z 7→ zk.

Proof. 还是先把问题化归为 C 上开集之间的映射：只需证明对 0 ∈ V ⊂ C，若非常

值解析函数 f : V → C 满足 f(0) = 0，则可以在 0 附近寻找一组坐标卡满足要求.

（这是基于唯一性定理 1.1.22，整体非常值可推出局部非常值）

现在我们利用幂级数的工具，设 f 在 0 附近的幂级数展开为

f(z) = akz
k + ak+1z

k+1 + . . .

其中 ak 是最小的非零系数. 因此存在常数项非零的解析函数 g 使得 f(z) = zkg(z).

根据幂级数的理论，存在幂级数 h 使得 hk = g，于是 f(z) = (zh(z))k，其中 h(0) ̸=

0.

由于 (zh(z))′ = h(0) ̸= 0，故 zh(z) 把 0 附近的一个开集 V1 ⊂ V 同胚到 0 附近

的一个开集 V2. 于是我们可以考虑

F : V2
(zh(z))−1

−→ V1
f=(zh(z))k−→ C

那么就有 F : z 7→ zk，证毕.

特别地，由于 Im[z 7→ zk] 把 0 附近的开邻域映到 0 附近的开邻域，因此我们有

如下开开开映映映射射射定理：

Corollary 1.3.7 (开映射定理). 设 f : X → Y 是 Riemann 面之间的非常值解析映

射，则 f 是开映射.

开映射是一个纯拓扑性质，我们可以借此一览不同正则性下要使“开映射”性

质成立所需要的条件.

(a) 在连续范畴中，我们有如下区域不变性定理：

Theorem 1.3.8 (区域不变性). 设 U 是 Rn 中的开集，则任意嵌嵌嵌入入入 f : U → Rn 的

像集 f(U) 是开集.

区域不变性定理的证明是基于高维版本的 Jordan 曲线定理：对任意 Sk 在 Sn

中的嵌嵌嵌入入入 f 我们能具体算出同调群 Hm(S
n− f(Sk))，而零维同调群指示连通性，因

此我们可证明任意 Sn−1 的嵌入把 Sn 分为两个连通分支，于是在 Rn 中也是如此.

因此，通过研究每个点 p ∈ U 在 U 中的小开球壳在 Rn 中嵌嵌嵌入入入所得像，我们得到球

壳“内部”的整个开集都落在 f 的像中，这就证明了开性.

从上述证明我们可以看出单性是必要的，维数相同也是必要的. 因此推广到流形

上，我们只能对相相相同同同维维维数数数拓扑流形之间的嵌嵌嵌入入入声明它是开映射.

(b) 在光滑范畴中，首先如果 f 是局部微分同胚，那么它显然是开映射. 因此如果

某个 df |p 可逆那么 f 在该点附近为开映射. 与复情形相类比，f : R → R, x 7→

x2 就不是开映射，因此该问题需依赖于对光滑结构的考量. 另一方面，我们刚

刚验证了常秩定理，于是我们可在这一条件下讨论开性质. 注意对欧氏空间之

间的嵌入



1 流形的微分结构 39

ι : Rn ↪→ Rm, (x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0).

它不不不是是是一个开映射，因为每点附近的像是低维数的对象，不可能成为开集（但它显然

有意义，我们在之后会定义“光滑流形的子对象”来 classify 这一点） 而对欧氏空间之间的投

影

p : Rm ↠ Rn, (x1, . . . , xm) 7→ (x1, . . . , xn)

它就是一个开映射，因为开集在投影下得到开集. 因此只要 df |p : TpM → Tf(p)N 的

秩为 dimN，也就是它为满满满射射射，那么就有 f 在 p 附近为开映射；反之如果它不是满

射，那么在 p 附近 f 把它打到一个更低维数的对象，从而不是开映射. 如果每点处

都有微分映射为满射，那么 f 就是开映射. 这样的映射被称为淹淹淹没没没映映映射射射，我们立即

会给它下一个定义，它也是本节后半段研究的重点.

(c) 在复流形中，我们已经看到一维连通复流形之间的非常值映射都是开映射. 这

和实情形非常不同，因为即使 f 在某点处导数为 0，也不会造成奇异现象出现.

而对一般的复流形没有类似的结论成立，我们仍然需要淹没的条件才能谈论开

映射.

(d*) 在代数几何中，我们所使用的拓扑——Zariski 拓扑 1.1.26 和通常所说的拓扑是

不不不同同同的的的，我们想在多项式环境中给出类似开性的概念——正正正则则则支支支配配配映映映射射射.

Definition 1.3.9 (正则支配映射). 称仿射簇之间映射 φ : X → Y 为正正正则则则映映映射射射，如

果它的每个分量都是正则函数，即所谓态射. 称 X 为支支支配配配映映映射射射，如果 φ(X) 在 Y 中

Zariski 稠密.

通常来说，正则支配映射加上一些技术性条件就能得到开映射性质，这便是基本开

性原理：

Theorem 1.3.10 (基本开性原理). 令 φ : Zr → Y r 为相同维数的仿射簇之间的一

个正则支配映射，令 x ∈ X 满足

• φ(x) 在 Y 中拓扑是单分歧的；

• {x} 是 φ−1(φ(x)) 的一个分支.

则在经典拓扑中，φ 在 x 点附近是开映射.

该定理代表了正则支配映射在代数——拓扑概念之间转化中的地位. 证明它的过

程中我们会考虑代数几何版本的 Sard 定理和 Zariski 主定理的证明.

让我们回到 Riemann 面上的讨论. 局部性质 1.3.6 中的“k”显然具有几何意义.

如果在某个局部坐标下 f 形如 z 7→ zk，那么对 f(p) 附近的任意点，它在 p 附近的

原像个数恰好为 k. 这一几何性质不随坐标卡选取而改变，因此是映射本身所具有的

性质，我们把它称为 f 在 p 处的重重重数数数，或者说 p 是 f(p) 的一个 k 重根.
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如果我们把焦点放在像集上，就可以发现：如果某个 q ∈ Y 含一个 k 重根

p ∈ X，那么 q 附近的所有点都在 p 附近含有 k 个一重根，这实际上告诉我们局部

上 #f−1(q) 在计重数的意义下是一个常量. 我们在之后会考虑映映映射射射度度度的概念，并说

明对较好的映射在整体上也有这样的性质成立.

特别地，我们有如下很强的推论：

Corollary 1.3.11. 设 f : X → Y 为 Riemann 面之间的非常值解析映射，若 f 为

集合层面上的单射，则 f 为 X 到它像集的解析同胚. 如果 f 还是集合层面上的双

射，那么 f 给出 X 和 Y 之间的解析同胚.

Proof. 这是因为此时任意 q ∈ Y 不存在 k ≥ 2 重根：否则在该点周围的点有 k 个原

像，矛盾. 而当 k = 1 时，结构定理告诉我们 f 是局部解析同胚. 结合 f 是单射就可

知 f 给出整体解析同胚.

我们再给出一些复变中经典结果在 Riemann 面上的推广. 它们有很多都基于开

映射这个纯拓扑结果（也说明了其威力）.

Corollary 1.3.12 (极大模原理). 设 f : X → C 是 Riemann 面上的解析函数，则 f

无法取到极大模.

Proof. 这是开映射定理 1.3.7 的直接推论，因为 f(X) 是 C 上的开集.

Proposition 1.3.13 (紧 Riemann 面上的映射). 如果存在 f : X → Y 为 Riemann

面之间的非常值解析映射，其中 X 为紧 Riemann 面，则 f 一定为满满满射射射，并且 Y 是

紧紧紧 Riemann 面. 特别地，紧 Riemann 面上的解析函数只有常值函数.

Proof. 首先根据开映射定理 1.3.7 得到 f(X) 是开集，又因为紧集在连续映射下的像

是紧集，而 Y 是 Hausdorff 空间，所以 f(X) 为 Y 上的闭集. 再根据 Y 的连通性以

及 f(X) ̸= ∅ 就得到 f(X) = Y，于是 f 是满射并且 Y 是紧 Riemann 面.

Theorem 1.3.14 (代数基本定理). 设 n ≥ 1，则多项式

f(z) = zn + an−1z
n−1 + · · ·+ a1z + a0

在 C 上有根.

Proof. 我们构造

f̃ : C → C, z 7→

f(z), z ∈ C;

∞, z = ∞.

通过考虑 ∞ 附近的坐标卡，我们可以验证 f 的确是解析映射：

1

f(1/z)
: C → C, z 7→ zn

1 + an−1z + · · ·+ a0zn
,

它在 0 附近有界并趋于 0，然后由可去奇点定理 1.1.21 即得.

现在利用 1.3.13 可知 f̃ 是满射，从而存在 z ∈ C 使得 f(z) = 0，证毕.



1 流形的微分结构 41

Remark. 代数基本定理有非常多的证明. 对拓扑上给出的证明（当然有非拓扑角度的证

明），我们可以从连续，光滑，解析三个角度上分别给出风格并不类似的证明，也能

看出它们各自的风格. 我们在之后会介绍从光滑角度给出的证明. 连续角度的证明概

要如下：如果 0 /∈ im f，考虑由 f/ |f | 给出的连续映射 C → S1，则 C 中任意圈的

像在 S1 中零伦. 考虑圈 |z| = R，当 R 足够大时 zn 这一项会给出“主要贡献”，从

而导致 f 形如 z 7→ zn，这导致 |z| = R 在 f/ |f | 下的像绕 S1 n ≥ 1 圈，但它并不

零伦，矛盾.

1.3.2 浸入与淹没

回到有关微分流形的讨论，我们之前已经看到切映射是单射和满射的情形是非

常有用的，为此我们给出如下定义：

Definition 1.3.15 (浸入和淹没). 设 f :M → N 是光滑映射.

• 若 df |p : TpM → Tf(p)N 是单单单同同同态态态，则称 f 在 p 处是浸浸浸入入入，若 f 处处为浸入

则称 f 为浸入映射.

• 若 df |p : TpM → Tf(p)N 是满满满同同同态态态，则称 f 在 p 处是淹淹淹没没没，若 f 处处为淹没

则称 f 为淹没映射.

由于一点处的浸入和淹没是稳定性质，我们通过常秩定理 1.3.5 直接给出下述推

论：

Corollary 1.3.16 (浸入/淹没的局部性态). 设 f : M → N 是光滑映射，它在点 p

处是浸入/淹没. 则存在 p 和 f(p) 附近的坐标卡 ϕ : U → V 和 ϕ′ : U ′ → V ′ 满足

f(U) ⊂ U ′，使得

ϕ′ ◦ f ◦ ϕ : V → V ′,

(x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0), f 是浸入;

(x1, . . . , xn) 7→ (x1, . . . , xm), f 是淹没.

今后我们提到典典典范范范浸浸浸入入入和典典典范范范淹淹淹没没没都是指欧氏空间中的上述标准映射.

我们也给出光滑流形的子对象的定义，一来我们可以更清晰地研究上述性质和

在局部和整体上的关系，二来我们可以严格说明 1.2 节中“嵌入 Rn 中的流形”的意

义，这是非常重要的，因为不仅很多流形都本身就是作为 RN 的子流形出现，而且

背景空间可以更有助于我们用多元微积分学中的工具对它进行研究.

Definition 1.3.17 (光滑子流形). 设 M 是 n 维光滑流形，S 是 M 的子集. 如果对

任意 p ∈ S，存在 p 在 M 附近的光滑坐标卡 φ : U → V ⊂ Rn 使得

φ(U ∩ S) = V ∩ (Rk × {0}) = {x ∈ V : xk+1 = · · · = xn = 0},

或者说 U ∩ S = φ−1(Rk × {0})，则称 S 为 M 的光光光滑滑滑子子子流流流形形形，codimS = n− k 称

为子流形的余余余维维维数数数.
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我们可证明上述相容光滑结构诱导 S 成为 k 维光滑流形. 反过来我们也可以说

子流形给出一组与底流形相容（通过典范嵌入）的坐标卡.

Example 1.3.18 (图像). 我们在例 1.1.5 中说明了一个连续函数 f : Rn → R 的图

像 Vf 是 n 维光滑流形，其拓扑结构为 Rn ×R 的子流形. 我们可证明当 f 是光滑函

数时 Vf 是 Rn × R 是通常意义下的光滑子流形. 只需考虑下述坐标卡：

φ : Rn ×R→ Rn × R, (x, y) 7→ (x, y − f(x)).

则首先 φ 为双射，其次 φ 是光滑映射（当 f 仅连续时这不成立），最后 φ(Vf ) =

Rn × {0}，这就给出光滑子流形.

我们接下来讨论子流形——整体性质和微分映射——局部性质之间的关系. 首先

如果 S ⊂ M 是子流形，那么有包含映射 ι : S ↪→ M，容易验证这是一个光滑映射，

且如果在每点附近取关于子流形的相容坐标卡，那么在这组坐标卡下 ι 表现为典范

浸入. 特别地，在每点处 dι|p : TpS → TpM 均为单同态. 因此，我们可将 TpS 实现

为 TpM 的子空间. 从几何上来看，它作为子空间实属自然（我们其实一开始就做了这件

事：在我们考虑把 M 作为 RN 的光滑子流形时，每点处的切空间都被实现为过这个点的一个超

平面，它实际上就作为 TpRN ∼= RN 的子空间） 在代数上，包含映射诱导出限制映射

ι∗ : C∞
p (M) → C∞

p (S)

于是 S 上的导子都是 M 上的导子. 反过来，如果一个 M 上的导子 D 满足 f |S =

g|S ⇒ D(f) = D(g)，那么 D 就是 S 上的导子. 这等价于说如果 f |S（作为函数芽）

为 0，那么就有 D(f) = 0.

根据上面的讨论，任意光滑子流形都可以实现为一个浸入映射的像集，反过来

我们也可以讨论一个光滑浸入 f :M → N 的像集 f(M) 何时成为 N 的光滑子流形.

• 首先根据常秩定理 1.3.5，对每点 p ∈ M，存在 p 与 f(p) 附近的坐标卡 φ :

U → U ′ ⊂ R 以及 ψ : V → V ′ 使得 ψ ◦ f ◦ φ 是典范浸入. 也就是说如果把 ψ

作为 N 在 f(p) 处的坐标卡，那么 ψ(f(U)) = V ′ ∩ Rn，所以 f(U) 是 N 的光

滑子流形.

• 将问题从局部过渡到整体时可能会出现问题. 比较容易发现的是所谓单单单性性性的问

题. 如果 f 不是单射，那么 f 的像可能甚甚甚至至至不不不是是是一一一个个个拓拓拓扑扑扑流流流形形形：比如让我们考

虑

F : R → R2, F (t) = (2 cos(t− π

2
), sin 2(t− π

2
))

它的图像是 8 字形，并且在 (0, 0) 处产生自交，显然不是一个流形. 因此我们

应当给 f 加上整体的单射条件.

• 另一个问题是：就算加上了单射性，我们也没法完全在在在像像像集集集空空空间间间中避免某个

f(U) 与远离 U 处点的像之间的影响. 比如还是之前的 8 字型曲线，但我们把
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它的定义域限制在 (−π, π)上：此时 F : (−π, π) → R2 的确是单射，但是 (0, 0)

的任意开邻域都会受到 F (−π,−π+ε)和 F (π−ε, π)两段的影响.但当我们讨论

局部性质的时候，两端的“触角”完全不会出现在考察范围之内. 更本质地说，

我们可以把上述“8”字形赋予由 f 从 R 继承的余诱导拓扑（U 为开集当且仅当

f−1(U) 为开集）使它成为一个光滑流形（比如在上面的情况中，F (−ε, ε) 就是余诱导

拓扑下的一个开集，它不受两端触角的影响）这和我们一般看到的子空间拓扑是不一

样的. 子空间拓扑比余诱导拓扑更粗糙（开集更少，分离性更差）. 与 Riemann 面

的情形 1.3.11 相对比，开映射的性质保证了上述情况不会发生.

由上述讨论，我们给出如下定义：

Definition 1.3.19 (浸入子流形). 若 f :M → N 是单浸入，则称 f(M) 为 N 的浸浸浸

入入入子子子流流流形形形. 与之对应地，定义 1.3.17 中的光滑子流形被称为正正正则则则子子子流流流形形形.

如果把 f(M) 赋予 N 诱导的子拓扑之后，f 给出 M → f(M) 的拓扑同胚，则

称 f 是一个嵌嵌嵌入入入映映映射射射，f(M) 为 N 的嵌嵌嵌入入入子子子流流流形形形.（即使 M,N 不是流形，我们也可以讨

论余诱导拓扑和像空间的子拓扑之间的关系，给出嵌入映射的定义，在考虑一些乘积结构时会用

到.）

很明显 f 是嵌入映射当且仅当与诱导拓扑和 N 上的子拓扑等同. 我们将验证这

是 f(M) 成为子流形的充要条件.

Theorem 1.3.20. 设 f :M → N 是单浸入，则 f(M) 是 N 的光滑子流形当且仅当

f 是嵌入映射.

Proof. 如果 f 是嵌入映射，则对任意 q = f(p) ∈ N，我们已经证明了存在 p, q 附

近的坐标卡 φ : U → U ′ 和 ψ : V → V ′ 使得 ψ(f(U)) = V ′ ∩ Rn. 但这未必给出

ψ(f(M) ∩ V ) = V ′ ∩ Rn. 然而根据 f 是嵌入映射，我们知道 f(U) 在 f(M) 被赋

予 N 的子流形拓扑下是开集. 于是存在开集 V1 ⊂ V 使得 V1 ∩ f(M) = f(U)，而

ψ(V1 ∩ f(M)) = ψ(V1) ∩ Rn. 这就给出了 q 附近的子流形坐标卡.

反之，如果 f(M)是 N 的正则子流形，我们只需证明对任意开集 U ⊂M，f(U)

是 N 中一个开集与 f(M) 的交集. 只需证明对每点 q = f(p) ∈ f(U)，存在它在 N

中的开邻域 V 使得 V ∩ f(M) ⊂ f(U). 这是容易的：我们只要取一组子流形坐标卡

在 q 附近把 f(M) 化为水平集，然后取 ψ(q) 附近小开球的原像即可.

不过下面的命题给了我们一个容易的判别准则，回忆一个映射被称为常常常态态态映映映射射射

（proper，逆紧），如果任意紧集的原像都是紧集.从紧空间到 Hausdorff空间的任意映

射都是常态映射，所以从紧流形到光滑流形的任意映射都是常态映射.

Proposition 1.3.21 (常态+单浸入=嵌入). 若 f : M → N 是常态的单浸入，则 f

是嵌入映射，f(M) 是 N 中的正则子流形. 特别地，从紧流形到光滑流形的任意单

浸入都给出嵌入.
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Proof. 只需在点集拓扑的意义下考虑 f : M → f(M)，我们证明 f 是闭映射. 对任

意闭集 A ⊂M，我们证明 f(A) ⊂ f(M) 是闭集. 根据 f(M) 的第二可数性，只需证

明对任意 {yn} ⊂ f(A)，yn → y 均有 y ∈ f(A). 则 {yn} ∪ {y} 是 f(M) 中的紧集，

根据逆紧性，它在 M 中的原像 {xn} ∪ {x} 是紧集. 根据紧等价于列紧可知 {xn} 有

收敛子列 {xni}，且 f(xni) → y，于是 xni → x ∈ A，这基于 A 的闭性得到. 于是

y ∈ f(A)，f(A) 是闭集.

与浸入的像相对应地，淹没映射的原像集也可以作为原像的光滑子流形出现. 我

们将会看到，相比浸入子流形它的性态会更好，从而广泛地被利用于光滑子流形的

判定中. 我们首先回忆数学分析中隐函数定理的表述：

Theorem 1.3.22 (欧氏空间隐函数定理). 设 f : Rn × Rm → Rm 满足 f(x0, y0) =

c. 如果 df |(x0,y0) 在第二个分量上诱导出一个 Ty0Rm → TcRm 的双射，那么存在

(x0, y0) 的邻域 U 及光滑映射 Φ : Rn → Rm 使得在 U 上，

f(x, y) = c⇔ Φ(x) = y.

我们用流形的语言将其重述. 隐函数定理实际上研究的就是整个原像集 f−1(c)

在某个 p = (x0, y0) ∈ f−1(c) 处的局部性态. 由于 Φ 是光滑映射，因此局部上

U ∩ f−1(c) 可看作一个光滑映射的图像，所以向第一个分量上的投影映射 pr1 : Rn ×

Rm → Rn 在 U ∩ f−1(c) 上的限制给出了 p 处的局部坐标卡.

进一步地，我们可以在每点处选择不同的“投影映射”. 也就是说：我们先不

取定原空间的典范分拆，将 f 视为 Rn+m → Rm 的光滑映射. 那么只要 df |p :

TpRn+m → TcRm 是满满满射射射，那么 Jacp f 作为一个 m× (n+m) 矩阵，存在一个满秩

的 m×m 子阵. 现在我们能把 Rn+m 分解为 Rnp × Rmp ，使得 df |p 在第二个直积分

量上诱导出双射，这样同样可以得到 f−1(c) 在 p 处的一个局部坐标卡. 于是，隐函

数定理可以总结为下述命题：

Theorem 1.3.23 (隐函数定理). 设 f : Rn+m → Rm 满足对任意 p ∈ f−1(c)，f 在

p 处是淹没. 则 f−1(c) 是 Rn+m 的子流形，且 codim f−1(c) = n.

事实上隐函数定理的证明思想已经被总结在反函数定理和常秩定理 1.3.5 的证明

中了，利用常秩定理，我们可以容易证明下面的正则水平集定理，即流形版本的反

函数定理：

Theorem 1.3.24 (常秩/正则水平集定理). 设 f : M → N 是光滑映射，若 q ∈ N

满足在 f−1(q)的一一一个个个邻邻邻域域域内内内恒有微分映射 df 的秩为 r，那么水平集 f−1(q)是余维

数为 r 的光滑子流形.

特别地，若 f 在整个 f−1(q) 上是淹没映射，则 f−1(q) 是余维数为 dimN 的光

滑子流形.
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Example 1.3.25 (还是球面). 考虑 F : Rn+1 → R, F (x) = |x|. 则对任意 x ̸= 0，

∂F

∂xi

∣∣∣∣
x

=
xi√

x20 + · · ·+ x2n
=
xi
|x|
,

于是存在某个 i 使得 ∂xiF (x) ̸= 0，此时 dF |x : TpRn+1 → TF (p)R 是满射. 所以对任

意 c ̸= 0，F−1(c) 都是 Rn+1 的子流形，特别地 Sn 是 Rn+1 的光滑子流形.

类似的例子还能举出很多很多.

鉴于其重要意义，我们将其总结为下述定义：

Definition 1.3.26 (正则/临界点，正则/临界值). 设 f : M → N 是光滑映射，

p ∈M，q ∈ N .

• 若 df |p : TpM → Tf(p)N 是满射，则称 p 是正正正则则则点点点，否则称 p 为临临临界界界点点点.

• 若对任意 p ∈ f−1(q)，p 都是正则点，则称 q 是正正正则则则值值值，否则称 q 是临临临界界界值值值.

则有关原像集的性质可总结为一句话：正正正则则则值值值的的的原原原像像像是是是光光光滑滑滑子子子流流流形形形. 如果再考

虑我们在下一节会引入的 Sard 定定定理理理：它告诉我们 N 中的临界值值值非常少，几乎所有

值都是正则值. 我们暂时不引入定理的具体描述，而在 1.4.1 节中将与它有关的问题

都说清楚. 我们立即能得到很多光滑子流形.

隐函数定理以及常秩/正则水平集定理在复流形和代数几何中也有对应物. 首先

在复流形上，隐函数定理和常秩水平集定理的描述和微分情形几乎完全一致：

Theorem 1.3.27 (全纯隐函数定理). 设 U ⊂ Cn × Cm 是开集， f : U → Cm 是全

纯映射。假设在点 (z0, w0) ∈ U 处满足：

(1) f(z0, w0) = 0；

(2) 关于 w 的复雅可比矩阵

Jf,w(z0, w0) =

(
∂fi
∂wj

(z0, w0)

)
1≤i,j≤m

是可逆的.

则存在 z0 的邻域 V ⊂ Cn 和唯一的全纯映射 g : V → Cm，使得 g(z0) = w0 且

f(z, g(z)) = 0 对所有 z ∈ V 成立.

Theorem 1.3.28 (全纯常秩水平集定理). 设 f :M → N 是复流形之间的全纯映射.

若 q ∈ N 满足在 f−1(q) 的一个邻域内恒有复微分映射 df 的秩为 r，那么水平集

f−1(q) 是余维数为 r 的复子流形.

特别地，若 f 在整个 f−1(q) 上是淹没映射，则 f−1(q) 是余维数为 dimN 的复

子流形.

而在代数几何中，我们有下述所谓形式隐函数定理：
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Theorem 1.3.29 (形式隐函数定理). 设 k 为特征零的代数闭域，考虑形式幂级数

环 A = k[[x1, . . . , xn, y1, . . . , ym]] = k[[x,y]]. 设 F = (F1, . . . , Fm) ∈ Am 满足：

(1) F (0,0) = 0；

(2) 关于 y 的形式雅可比矩阵

JF,y(0,0) =

(
∂Fi
∂yj

(0,0)

)
1≤i,j≤m

∈ Matm×m(k)

是可逆的（即 det JF,y(0,0) ̸= 0）.

则存在唯一的 m-元形式幂级数 G = (G1, . . . , Gm) ∈ k[[x]]m 满足：

• G(0) = 0；

• 对所有 x 在形式邻域内，

F (x, G(x)) = 0

在 k[[x]] 中成立.

等价地，完完完备备备局局局部部部环环环的商 k[[x,y]]/(F1, . . . , Fm) 作为 k[[x]]-代数同构于 k[[x]].

在仿射簇上我们可以研究任何点处的原像集，或者称之为纤纤纤维维维. 首先对一个态

射我们可类似定义正则点，正则值的概念. 此时我们有：

Theorem 1.3.30. 设 k 是一个特征零的代数闭域，f : X → Y 是一个正则支配映

射. 则任意正则值 q 的水平集是一个 X 中的光滑子簇，其余维数为 dimY .

在代数几何中我们还能讨论临界值和非闭点的原像集. 正则值对应的纤维维数是

所有可能出现的维数下界，即

dim f−1(y) ≥ dimX − dimY.

我们还能给出一个上界，任意闭点的纤维维数不会超过 X 的整体维数.

dim f−1(y) ≤ dimX.

我们也可以研究不同点处纤维维数的变化，它们被所谓上半连续性定理所控制.

Theorem 1.3.31 (上半连续性定理). 设 f : X → Y 是有限型态射，则函数 y 7→

dim f−1(y) 是上上上半半半连连连续续续的. 即对于任意整数 k，集合

{y ∈ Y : dim f−1(y) ≥ k}

是 Y 中的闭闭闭子子子集集集.
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1.3.3 正则值的原像集：映射度理论

我们之前已经说明了正则值的原像集是子流形. 特别地，当 dimM = dimN 时

正则值的原像是 0 维子流形，它只可能是 M 中的离散点集. 对任意 p ∈ f−1(q)，f

在 p 附近给出局部微分同胚. 再进一步地，如果 f 是常常常态态态映射，那么 #f−1(q) 是有

限集，并且存在开邻域 q ∈ Uq 和每个 p ∈ f−1(q) 的开邻域 Vp 使得对每个 p，f 都

给出 Vp 到 Uq 的同胚. 这意味着 #f−1(q) 是一个局局局部部部常常常值值值函函函数数数.

然而即便如此，#f−1(q) 并不是一个仅关于映射 f 的值. 我们有如下例子：

Example 1.3.32. 考虑一个光滑映射 f : S1 → S1，将两个圈均使用 [0, 1] 参数化，

0 和 1 代表同一个点. 考虑如下定义的 f：

0 1
2

0 1
2

1
[0, 14 ] [ 14 ,

1
2 ] [ 12 ,

3
4 ] [ 34 ,1]

比如说在 [0, 1
4
] 这段时间里 f(t) 从 0 匀速移动到 1

2
. 则 [0, 1

2
] 这段被来回走了 3 次

但 [ 1
2
, 1] 这段只被走了一次. 虽然目前 f 不是光滑映射，但我们我们可容易地将其

用一个光滑映射逼近使得只在边界上稍作修改，这导致 (ε, 1
2
− ε) 仍然被走了 3 次而

( 1
2
+ ε, 1− ε) 只被走了 1 次，并且这些值显然都是正则值，我们就有

3 = #f−1(
1

4
) ̸= #f−1(

3

4
) = 1.

从临界值的分布来看，在 0 附近和 1
2
附近会产生两个临界值，它们把圆周分成了不

连通的两个正则值分支，所以即使 #f−1(y) 是局部常值函数它也并不在所有正则值

上取值相同.

类似的方法我们可以让 f 来回走过 [0, 1
2
] 奇数次并最后沿 [ 1

2
, 1] 走回原点，我们

能清楚看到该命题如何修复：要么我们把“来”和“回”两个方向上经过某点的权

重分别记作 +1和 −1，然后把 #f−1(y)定义为带权重的求和，但这显然会导向可定

向性的讨论；要么我们就直接论证 #f−1(y) 的奇偶性作为不变量. 这一现象呼应于

我们在定向一节 1.2.2 最后关于流形的 Z-定向和 Z2-定向可定义性的讨论.

而对 Riemann 面来说，我们之前所研究的局部性质就能保证上面的事情不会发

生，因此我们接下来先在 Riemann 面上考察映射度的定义.

根据开映射定理 1.3.7 和关于原像集离散的结论 1.1.23，映射的像与原像已经

被研究地很清楚了. 我们关心的对象并不和微分流形完全一样：根据局部性质 1.3.6，

如果 f 在 p 附近形如 z 7→ z，那么 f 形如局部同胚；而如果 f 在 p 附近形如

z 7→ zk(k ≥ 2)，那么在该小邻域中去掉 p点后，z 7→ zk 给出一个 C−{0} → C−{0}

的覆覆覆叠叠叠映映映射射射，特别地也是局部同胚. 因此在 Riemann 面中，这些造成分歧的点则是

所谓的“奇异点”，相应的它的像是所谓奇奇奇异异异值值值. 为了研究 Riemann 面之间映射，

我们可以通过去掉奇异值及其原像以得到一个局部同胚映射，然后再尝试把它延拓
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到整个 Riemann 面上. 由于我们本质上只在 2 维实空间上去掉了一个离散集，所以

这样的复原过程只需局部进行，而这是容易的.

我们先给出一些相关定义：

Definition 1.3.33 (分歧点，奇异值). 设 p : X → Y 是 Riemann 面之间的非常值

解析映射. 称 y ∈ Y 是一个（关于 p 的）分分分歧歧歧点点点，如果在 y 的任意邻域 V 上，p|V 都

不是单映射. 如果 p 有分歧点则称其为分分分歧歧歧解解解析析析映映映射射射，否则称为非非非分分分歧歧歧解析映射.

全体分歧点的像被称为奇奇奇异异异值值值.（我们可以把非奇异值叫做）

我们先研究非分歧的解析映射，此时该映射一定是一个局部同胚. 下面简单但重

要的命题允许我们安心地将覆叠空间相关命题搬到 Riemann 面的研究中而不会越出

Riemann 面的范畴.

Proposition 1.3.34 (局部同胚继承复结构). 若 f : X → Y 是从第二可数 Hausdorff

空间到 Riemann 面的局部同胚，则 X 也是 Riemann 面. 特别地，Y 的所有覆叠空

间都是 Riemann 面.（我们可以想见流形的良好局部性质能满足（万有）覆叠空间存在的各种

需求.）

Proof. 局部同胚性允许我们在每点附近通过拉回作用找到一个复图卡，相容性是因

为两个图卡的相交结构也直接被同胚到由 Y 中，由 Y 中图卡的相容性所保证.

同时，拓扑范畴中的映射提升也可以直接是解析的：

Proposition 1.3.35 (解析的提升也是解析的). 设 X,Y, Z 是 Riemann 面，其中

p : Y → X 是非分歧解析映射. 设 f : Z → X 解析映射，它的一个提升是 f̃ : Z → Y .

则 f̃ 也是解析映射.

特别地，对给定的 Riemann 面 X，它的任意两个覆叠空间之间的覆叠变换都是

解析映射.

Proof. 这是直接利用局部同胚继承复结构所得的结果.

借助上面两个命题，我们得到：

Proposition 1.3.36 (万有覆叠存在性). 设 X 是 Riemann 面，则存在一个单连通

Riemann 面 X̃ 及覆叠映射 p : X̃ → X，并且在保基点解析同胚的意义下唯一. 从而

对任意 G < π1(X)，存在一个 X 的覆叠 Y 是 Riemann 面并且满足 π1(Y ) ∼= G.

Proof. 回忆在覆叠空间理论中，一个拓扑空间万有覆叠的存在性是基于道路连通，

局部道路连通，半局部单连通性. 后两者完全被拓扑流形所具有的局部欧氏性质所满

足.

之后的建构由覆叠理论中的 Galois 理论所保证，上两个命题保证了覆叠空间都

是 Riemann 面，覆叠映射和覆叠变换都是解析映射，因此作为拓扑空间的同胚意义

下的唯一性可直接导向解析同胚意义下的唯一性.
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反过来，复变可给覆叠空间理论提供充足的例子.

Example 1.3.37 (对数映射). 我们知道函数 log : C∗ → C 是一个多值函数，当选

定任意一个基点 z0 ∈ C∗，然后选取某个 f(z0) ∈ log z0 时，f 可唯一扩张为 log 的

一个解析分支.

我们可以用覆叠空间的语言来重述这件事：首先我们可验证 exp : C → C∗ 是一

个解析的覆叠映射，于是对任意 f : X → C∗，如果 X 是单连通的，那么当选定某

个 w0 ∈ exp−1(z0) 时，f 可唯一提升为一个 X → C 的映射，满足下述交换图表考

虑下述交换图表

C

X C∗

exp
log f

f

这就被称为 log f 的一个解析分支. 我们可以把 exp 映射的覆叠变换群研究清楚：设

τn : z 7→ 2πin 是虚轴方向的提升作用，则

Deck(C exp−→C∗) = {τn : n ∈ Z} ∼= Z.

特别地这给出 π1(C∗) ∼= Z.

为了得到道路提升以及映射提升性质，光有局部同胚性是不够的. 一方面，局部

同胚性不能保证满性，另一方面没法在纤维上给出同胚的一致性. 然而，之前所定义

的常常常态态态映映映射射射能直接保证覆叠性质成立：

Proposition 1.3.38. 设 p : X → Y 是局部紧拓扑空间之间的常态局部同胚，则 p

是覆叠映射.

特别地，如果 p 是 Riemann 面之间的非常值常常常态态态非分歧解析映射，则上述所有

条件自动满足，p 一定是覆叠映射.

Proof. 首先对任意 y ∈ Y，根据常态映射的性质 p−1(y) 是非空有限集. 因此我们可

为每个 xi ∈ p−1(y) 选取一个开邻域 Ui 使得 p|Ui : Ui → Vi 是同胚，根据同胚性可知

这些 Ui 互不相交. 由于局部紧空间之间的常态映射 p 是闭映射，因此 p(X −
⋃
Ui)

是闭集，取 V = (Y − p(X −
⋃
Ui)) ∩

⋂
i Vi 为开集，则一方面 y ∈ V，另一方面

p−1(V ) ⊂
⋃
Ui.（这条性质是必要的：即 y 附近点不能有远离 f−1(y) 的原像，而这需要借助闭

映射相关性质才会成立，不能简单地取 V =
⋂

Vi.） 所以

f−1(V ) =
⋃
i

p−1(V ) ∩ Ui;

并且根据 p|Ui 给出同胚可知：

f |p−1(V )∩Ui : p
−1(V ) ∩ Ui → V ⊂ Vi 是同胚.

因此 p 是覆叠映射，证毕.
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原像集 f−1(y) 在覆叠空间中对应所谓叶叶叶数数数的概念：覆叠空间中关于基点变换所

给出的道路提升的性质告诉我们对任意 y, y′ ∈ Y 均有 #f−1(y) = #f−1(y′). 从而，

如果 f : X → Y 是非常值的常态非分歧解析映射，那么我们可以良良良定定定义义义 deg f 为任

意一个 y ∈ Y 的原像集的大小. 对一般的非常值常态解析映射 f : X → Y，我们就

可以借此来定义映映映射射射度度度.

Definition 1.3.39 (Riemann 面：映射度). 设 f : X → Y 是非常值常态解析映

射，Crit f 为 f 的全体奇异值构成的集合. 记 X ′ = X/f−1(Crit f)，Y ′ = Y/Crit f .

则 f |X′ : X ′ → Y ′ 是非非非分分分歧歧歧的解析映射，进而是一个覆叠映射，我们就把这个覆叠

映射的叶数（根据 proper 性它有限）称作 f 的映映映射射射度度度，记为 deg f .

对任意 y ∈ Y，f−1(y) 是一个有限集. 我们在研究局部性态 1.3.6 时定义了重数

的概念：对每个 x ∈ f−1(y)，如果 f 在 x, y 附近形如 z 7→ zk 就称 f 在 x 处的重数

为 m(f, x) = k.（我们验证了它不依赖于局部坐标的选取） 进而，对每个像 y ∈ Y 我们定

义其重重重数数数为其原像集中全体重数之和.

m(f, y) =
∑

x∈p−1(y)

m(f, x).

有时也直接记作 #f−1(y)，即所谓 f−1(y) 作为可重集的大小.

Theorem 1.3.40. 设 f : X → Y 是非常值常态解析映射，则总有 deg f = #f−1(y)

对任意 y ∈ Y 成立.

Proof. 这是基于 Crit f 在 Y 中构成离散集，而覆叠空间的理论已经保证了 deg f =

#f−1(y) 对任意 y ∈ Y ′ 成立，于是我们只需在每个奇异值的局部上证明命题成立即

可. 设 f−1(y) = {x1, . . . , xn}，在每个 xi 附近选择一个坐标卡 Ui 对应 y 附近的坐

标卡 Vi，使得 Ui → Vi 形如 z 7→ zk. 则对任意 y′ ∈ Vi − {y}（它总是非奇异点）均有

y′ 在 Ui 中恰有 k 个（一重）原像，根据定义

m(f, xi) = k = m(f |Ui , y′).

根据 f 是闭映射可知，存在 y 的一个开邻域 V ⊂
⋂
i Vi 原像落在

⋃
Ui 中.（我们在

1.3.38 的过程中对此给出过一个证明.） 现在取 y′ ∈ V − {y}，则

#f−1(y) =
n∑
i=1

m(f, xi) =
n∑
i=1

m(f |Ui , y′) = #f−1(y′) = deg f.

证毕.

特别地，从紧 Riemann 面到 Riemann 面的任意映射都是常态的，从而对任

意非常值解析映射都可以良定义映射度. 一个在复变函数中非常典范的情形是考虑

Riemann 球面上的解析函数 f : C → C 或者亚纯函数 f : C → C. 于是我们就重新得

到了复变函数中的下述定理：（回忆我们在那里是利用积分方法 1
2πi

∫
γ
f ′/f dz = #f−1(0).

我们将在第二部分去介绍积分方面的想法.）
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Corollary 1.3.41. 整函数 f : C → C 的极点个数和零点个数相同.

Proof. #f−1(0) = #f−1(∞) 是定理 1.3.40 的直接推论.

特别地，当 f 是一个多项式时仅有 f(∞) = ∞. 由于 f 在 ∞ 附近坐标卡下的

展开形如

g =
1

f( 1
z
)
: z 7→ zn

a0zn + a1zn−1 + · · ·+ 1

由于分母是常数项为 1 的解析函数，因此 g 的级数展开最低次项恰好是 zn，所以

∞ 是 f 的 n 阶极点. 从而 #f−1(0) = #f−1(∞) = n. 这就重新证明了代数基本定

理.

我们关于分歧与非分歧的映射之间的联系再多说几句. 事实上我们有所谓分分分歧歧歧

覆覆覆叠叠叠解析映射概念，它指的就是常态的非常值解析映射. 我们可以把研究覆叠空间

的语言（如覆叠变换群，Galois 扩张）应用到分歧覆叠上，这基于如下的一些和延

拓有关的命题：

Proposition 1.3.42. 设 Y 是 Riemann 面，A ⊂ Y 是闭的离散集，记 Y ′ = Y −A.

则对任意非常值，非分歧的常态解析映射 f : X ′ → Y ′，我们都能找到一个 Riemann

面 X，一个分歧常态解析映射 f̃ : X → Y 以及一个解析同胚 Φ : X − f̃−1(A) → X ′

使得 f ◦ Φ = f̃ |X−f̃−1(A).

Proposition 1.3.43. 设 X,Y, Z 是 Riemann 面，f : X → Z 和 g : Y → Z 分别是

常态分歧解析映射，记 Z ′ = Z − Crit f − Crit g，X ′ = f−1(Z ′)，Y ′ = g−1(Z ′). 那

么 f |X′ 和 g|Y ′ 都是非分歧解析映射. 则对任意覆叠变换 σ : X ′ → Y ′，它可唯一延

拓为保纤维的变换 σ̃ : X → Y .

特别地，取 X = Y 我们就可以为任意非常值常态解析映射 f : X → Z 良定义

它的覆覆覆叠叠叠变变变换换换群群群.

最后，全纯分歧覆叠的映射度还和 Riemann 面上的亚亚亚纯纯纯函函函数数数域域域这一代数对象相

关：

Example 1.3.44. 设 X,Y 是 Riemann 面，π : Y → X 是 n 重全纯分歧覆叠映射.

对任意 f ∈ M (Y )，考虑它对应的初等对称函数 c1, c2, . . . , cn 如下：

• 先考虑非分歧的情况，此时 π : Y ′ → X ′ 为 n 重覆叠映射，设 Deck(Y ′/X ′) =

{τ1, . . . , τn}. 则形式多项式

(T − τ1f)(T − τ2f) . . . (T − τnf)

的每项 T k 之系数都是一个定义在 Y ′ 上的在所有覆叠变换下不变的亚纯函数，

根据覆叠变换理论它是 X ′ 上一个亚纯函数 ck 在 π∗ 下的拉回. 它就被称为第

k 个初等对称函数.
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• 对一般的分歧覆叠映射，我们可先通过 π′ : Y ′ → X ′ 来在 X ′ 上定义初等对称

函数，剩下的点都是孤立点. 通过证明对足够大的 N 总有 zNck 在这些点附近

有界，我们可以将其亚纯延拓到整个 X 上.

现在最初的 f 满足

fn + (π∗c1)f
n−1 + · · ·+ (π∗xn−1)f + π∗cn = 0. (∗)

也就是说，如果把M (X)通过 π∗ 的拉回作用域嵌入到M (Y )中，那么每个M (Y )

中元素对应的极小多项式次数至多为 n. 我们可通过代数上的单扩张定理说明这意

味着

[M (Y ) : M (X)] ≤ n.

进一步地，若 f 对应的极小多项式为

fm + (π∗p1)f
m−1 + · · ·+ π∗pm = 0,

对任意 x ∈ X 将上述关系式取值于每个 y ∈ f−1(x)，则所有 f(y) 应当满足相同的

关系式

f(y)m + p1(x)f(y)
m−1 + · · ·+ pm−1(x)f(y) + pm(x) = 0.

所以 {f(y) : y ∈ f−1(x)} 中至多出现 m 种不同取值.

事实上，我们总是可以证明存在某个 f ∈ M (Y ) 及某个 x ∈ X 使得对 y ∈

f−1(x)，f(y) 的取值两两不同. 这就说明了 f 对应的极小多项式次数只能为 n，从

而只能是 (∗). 这其实就说明了：

[M (Y ) : M (X)] = n = deg f.

接下来回到微分拓扑中对映射度的讨论. 我们可能会用到 1.4.1 节对 Sard 定理

的具体描述和 1.4.4 节对带边流形的讨论，理论上这部分内容将承接 1.4.4 节. 首先

我们把本节开头的讨论总结为下述命题：

Proposition 1.3.45. 设 f : M → N 是相同维数光滑流形之间的常态光滑映射，则

#f−1(y) 是定义在 N 中全体正则值集合（一个稠密开集）上的局部常值函数.

Proof. 证明和 1.3.38 中完全类似，我们就是运用常态映射所带来的闭映射拓扑性质

来给出证明.

Sard 定理的称述中，临界值构成一个零零零测测测集集集，但绝不一定是有限集，离散集或

者可数集. 例 1.3.32 中就说明了这可能导致整体常值性不成立. 不过也可以来看一个

局部常值性能推出整体常值性的例子，重新证明代数基本定理 1.3.14：
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Proof for 1.3.14. 类似当时的证明，我们把 f = zn+ an−1z
n−1 + · · ·+ a0 延拓为球面

之间的光滑映射. 我们选择两个典范的关于南极点 (0, 0,−1) 和北极点 (0, 0, 1) 球极

投影

ϕN : S2 − {(0, 0, 1)} → R2, ϕS : S2 − {(0, 0,−1)} → R2,

并定义

f̃ : S2 → S2, f̃(p) =

ϕ
−1
N ◦ f ◦ ϕN (p), p ̸= (0, 0, 1);

(0, 0, 1), p = (0, 0, 1).

通过球极投影的具体表达式，我们可以在 ϕS 对应的坐标卡上验证 f̃ 给出光滑映射，

从而 f̃ 是球面之间的光滑映射，根据球面的紧性它显然是常态映射.

现在考虑 f̃ 的临界点：p ̸= (0, 0, 1) 是临界点当且仅当多项式 f : R2 → R2 在

ϕN (p) 处的微分映射退化，这等价于 f ′(ϕN (p)) = 0. 而由于 n ≥ 1，故多项式 f ′ 的

零点个数不超过 n − 1. 从而至多再算上 (0, 0, 1)，f̃ 在 S2 上的临界点构成有限集，

于是临界值也构成有限集.

而我们已经说明了在正则值集合上定义的 #f−1(y)是局部常值函数，又因为 S2

去掉有限个点后得到连通集，于是所有正则值上原像个数一致. 如果这个值为 0，那

么 f 的像集是离散集，根据连续性 f 只能是常值函数，这不可能.

所以 f̃ 的像集包含了所有正则值，进而也包含了 S2 中除了一个有限集外的所有

点. 由于像集 f̃(S2) 为闭集，它应当包含所有点. 特别地，多项式 f 存在零点.

对一般的光滑流形，我们先来考虑 mod 2 映射度的良定义性，我们考虑的命题

也和一般的映射度定义相关. 为此需要先引入一些拓扑该概念：

Definition 1.3.46 (光滑同伦和光滑同痕). 称 f, g : M → N 光光光滑滑滑同同同伦伦伦，如果存在

从带边流形到 Y 的光滑映射 F :M × [0, 1] → Y 使得

F (∗, 0) = f, F (∗, 1) = g.

F 被称为 f 和 g 之间的光滑同伦，记作 F : f ≃ g. 我们也经常将同伦用一族映射

{Ft}t∈[0,1] 的记号表示，此时有 F0 = f 以及 F1 = g. 如果每个 Ft 都给出 X → Y 的

微分同胚，那么称 f 和 g 是光光光滑滑滑同同同痕痕痕的. 我们经常对一个光滑流形 M 讨论其光滑自

同痕.

Remark. 我们会在 1.4.2 章最后讨论纽结时回到对同痕概念的研究.

接下来的证明大致分为如下两步：

• 先证明 #f−1(y) mod 2 是光光光滑滑滑同同同伦伦伦不变量，即对 f1 ≃ f2 : M → N 和正则值

y 总有 #f−1
1 (y) = #f−1

2 (y) mod 2.
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• 然后证明存在一个 N 上光滑同痕于恒等映射的自同胚 Φ 将 N 上任意某点 y

送到另一点 z，从而对任意光滑映射有 Φ ◦ f ≃ f，则

#f−1(z) = #(Φ ◦ f)−1(z) = #f−1(y)mod 2.

Remark. 我们在证明中会看到要求光滑同痕性而不只是光滑同伦的重要性.

Lemma 1.3.47. 设 f, g : M → N 是相同维数光滑流形之间的常态光滑映射. 若 f

与 g 光滑同伦且存在 F : f ≃ g 也是常态映射，则对任意 f 与 g 的公共正则值 y 均

有

#f−1(y) = #g−1(y) mod 2.

Proof. 我们可将其证明与后文的命题 1.4.39 作比对. 考虑常态映射 F : M × [0, 1] →

N 使得 F0 = f 且 F1 = g. 如果 y 是 F 的正则值，那么根据带边流形正则水平集定

理 1.4.38， F−1(y) 是 M × [0, 1] 中的带边 1 维子流形. 根据常态性可知该子流形是

紧的. 于是其边界上恰好含有偶数个点. 所以

0 = #∂F−1(y) = #F−1(y) ∩ ∂(M × [0, 1]) = #F−1(y) ∩ (M0

∐
M1)

= #f−1(y) + #g−1(y), mod 2.

这就说明了 #f−1(y) = #g−1(y), mod 2. 如果 y 不是 F 的正则值，由于 f 和 g 的

公共正则值在 N 上构成开集，因此在 y 附近存在一个公共正则值开邻域. 但 F 在

N 上几乎处处是正则值，所以可在该开邻域上拣取 F 的一个正则值 y′. 根据局部常

值性 1.3.45，我们就得到对任何公共正则值 y 都有

#f−1(y) = #f−1(y′) = #g−1(y′) = #g−1(y), mod 2.

Remark. 如果要求 M 为紧流形则 M × [0, 1] 也是紧流形，从而可以自动去掉所有关

于常态的假设.

Lemma 1.3.48 (齐性引理). 对光滑流形 M 上任意两点 y, z，存在一个光滑同痕于

恒等映射的自同胚 Φ 把 y 送到 z. 如果允许 M 带边，那么要求 y 和 z 是内点.

Proof. 证明利用到光滑向量场的性质. 我们首先证明在欧氏空间 Rn 中存在一个光滑

同痕与恒等映射的自同胚 Φ 把原点送到单位球内部任意一点，且保持单位球外部不

动. 我们希望选取定义在 Rn 上但支在 Dn 上的光滑向量场. 为此考虑光滑截断函数

ϕ 满足

ϕ : Rn → R,

ϕ(x) > 0, 0 ≤ |x| < 1;

ϕ(x) = 0, |x| ≥ 1.
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设由原点指向我们想到达的点 p 方向的单位向量为 v，我们选取一个光滑向量场 T

满足 T (x) = ϕ(x) · v. 由此我们可讨论任何点在该向量场作用下运动形成的轨迹，我

们发现原点在该向量场作用下会朝着我们想到达点的方向前进，有限时间内能到达

该方向上单位圆盘内的任意点 p.

现在我们设 φt : Rn → R 将 x 送到它沿向量场运动 t 时间后所得的像，则我们

有：

• φ0 = id，存在某个 φt0 把 0 送到我们想要的 p；

• 所有 φt 都保单位球面上及之外的点不动；

• 所有 φt 都是 Rn 上的自同胚，并且 {φt} 把 φ0 光滑同痕到 φt0 .

这就证明了局部命题. 在一般的光滑流形上，我们声称如果定义

x ∼ y ⇔存在光滑同痕与恒等映射的自同胚 Φ 使得 Φ(x) = y,

那么 ∼ 成为一个等价关系. 其中自反性显然.

• 对称性：若有光滑同痕 ht : M → M 使得 h0 = id 且 h1(x) = y，则 {h−1
t } 也

是一族光滑同痕，并且 h−1
0 = id 且 h−1

1 (y) = x. 从而有 y ∼ x.

• 传递性：若有 ht, h
′
t : M → M 使得 h0 = h′0 = id 且 h1(x) = y, h′1(y) = z，那

么 {h′t ◦ h1} 也是一个光滑同痕，初始有 h′0 ◦ h1(x) = y，最终 h′1 ◦ h1(x) = z.

于是 {ht} 和 {h′t ◦ h1} 合起来给出一个光滑同伦，并最终把 x 送到 z，于是我

们有 x ∼ z.

现在由于每个 x 都存在一个同胚于 Rn 的开邻域，因此 x 总是和它附近的点在同一

个等价类中. 根据连通性论证，我们容易得到所有点都应当在同一个等价类中，证

毕.

Remark. 根据命题中的论证，在将某个确定的 x 送到 y 时，我们可以保证光滑同痕

只在某条连接 x, y 之间线段的紧紧紧邻邻邻域域域上非平凡. 这就导致整个 h : M × [0, 1] → M

是常态映射，因为每个紧集的原像是某个紧集 ×[0, 1] 和一个紧集内闭集之并，从而

满足逆紧性. 这就允许我们使用引理 1.3.47 给出下述定义.

Definition 1.3.49 (模 2 映射度). 设 f : M → N 是相同维数光滑流形之间的常态

光滑映射. 则对任意两个正则值 y, z ∈ N 都有

#f−1(y) = #f−1(z), mod 2.

从而这个量只和映射 f 本身的性质有关，他被称之为 f 的模模模 2 映映映射射射度度度，记作 deg2 f .

从证明过程我们也可看出，如果两个常态光滑映射是光滑同伦的，那么它们的模 2

映射度相同. 作为推论，球面 Sn−1 上的恒等映射模 2 映射度为 1，常值映射映射度
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为 0，从而它们不光滑同伦. 这就重新证明了 Brouwer不动点定理的等价命题 1.4.42

中的 (3).

将映射度推广到 Z 值需要可定向的概念. 回顾上面的证明，在引理 1.3.47 的证

明中我们粗糙地给出了

0 = #F−1(y) = #f−1(y) + #g−1(y), mod 2.

但实际上一维流形可以容易地被赋予方向，比如当一条线段从 M × {0} 绕一圈回到

M ×{0} 时，它恰好贡献了一次“离开”M ×{0} 和一次“进入”M ×{0}，它们应

当互相抵消. 而当线段一端在 M × {0} 上另一端在 M × {1} 上时，贡献了一次“离

开”M × {0} 和一次“进入”M × {1}. 所以在计重数的意义下就可以讨论 #f−1(y)

和 #g−1(y) 之间的关系. 由于其整体和模 2 映射度的建立相同，我们只简略地进行

讨论.

Definition 1.3.50 (带权重的原像集计数). 设 f : M → N 相同维数可定向光滑流

形之间的常态光滑映射，并且已经事先选定好了 M 和 N 的定向，这样在每个切空

间上我们都选定了一个标架类.

现在假设 df |p : TpM → Tf(p)N 为线性同构，则 df |p 将 TpM 中的标架类推

出到了 Tf(p)N 中，如果推出标架类和 Tf(p)N 上原本选取的标架类定向相同，则记

sgn df |p = 1，反之记 sgn df |p = −1. 现在为每个正则值 y 我们可以定义

deg(f ; y) =
∑

x∈f−1(y)

sgn df |x.

特别地，如果 M = N，我们也可以不事先选择定向，而规定将两边赋予相同定向，

仍然可以良定义 deg(f ; y).

Definition 1.3.51 (为正则水平集赋予定向). 设 f : M → N 是相同维数可定向光

滑流形之间的光滑映射，并且 M 和 N 已经被赋予了定向. 设 y ∈ N 是一个正则

值，则我们可为 f−1(y) 按如下要求赋予定向：我们知道 Txf
−1(y) = ker df |x，所以

可选择一个 TxM 上对应于选取标架类的标架，使得其前 m− n 个分量构成 ker df |x
的标架，后 n 个分量推出到 TyN 上相容于 TyN 上对应的标架类. 这样我们就将

Txf
−1(y) 赋予前 m − n 个分量所给出的标架类. 容易证明这样赋予的标架类与定义

它所选取的标架无关.

Proposition 1.3.52. 设 f, g : M → N 是相同维数可定向光滑流形之间的常态光滑

映射. 若 f 与 g 光滑同伦且存在 F : f ≃ g 也是常态映射，则对任意 f 与 g 的公共

正则值 y 均有

deg(f ; y) = deg(g; y).

Proof. 首先 f
∐
g : M+

∐
M− → N 关于某个正则值 y 的映射度为 deg(f ; y) −

deg(g; y)，其次 f
∐
g 可延拓为 F : M × [0, 1] → N 在边界上的限制，我们可以说
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明一维子流形 f−1(y) 中每条线段在两端分别给出一个正定向和反定向贡献，从而

0 = deg(f
∐

g; y) = deg(f ; y)− deg(g; y).

证毕.

结合上齐次引理 1.3.48，对任意两正则值我们总有 deg(f ; y) = deg(f ; z)，从而

我们可以对任意常态映射 f 良定义映射度 deg f 为任意正则值的带权重原像集大小.

Remark. 与 Riemann 面上的映射度相对比，由于 Riemann 面之间的所有解析映射

都是保定向的，导致我们可以直接对原像集计数而不需要考虑正负符号.

在拓扑范畴中，为了对常态映射定义映射度，我们需要引入紧支上同调 Hn
c (M)

和 Hn
c (M ;Z2)，对 f :M → N 我们就分别用它诱导出的最高阶紧支上同调上的映射

Hn
c (M) → Hn

c (N) 和 Hn
c (M ;Z2) → Hc(N ;Z2) 来在可定向情形下定义映射度和一般

情形下定义模 2 映射度. 与上述建构相比，这个定义更强调了为什么映射度是只关

于 f 的性质，但是是实际运算中，比如在计算球面映射度时会发现微分拓扑的定义

方法非常便于计算，当给定一个正则值时，我们可以借助局部映射度验证这两种定

义方法的等价性. 值得一提的是，在 de Rham 上同调的语言中由于在最高阶微分形

式上可定义积分，所以映射度能直接用体积形式拉回的积分来定义∫
M

f∗ω = deg f ·
∫
N

ω.

该定义相当之简洁，且直接从定义出发，验证映射度是整数这件事都并不平凡！

最后我们来简要介绍代数几何中的映射度概念. 回忆我们在例 1.3.44 中讨论了

Riemann 面之间映射的映射度和亚纯函数域之间域扩张的关系. 而对仿射簇而言，

一个簇自然会对应一个坐标环，我们可用它来定义域扩张次数.

Definition 1.3.53 (有限支配态射与映射度). 设 f : X → Y 是仿射簇之间的支配

态射，则它诱导出坐标环上的同态 f∗ : A(Y ) → A(X)，这将 A(X) 实现为了一个

A(Y )-模. 若这给出一个有有有限限限生生生成成成模模模，则称 f 是一个有有有限限限态射. 此时 f∗ : K(Y ) →

K(X) 诱导一个有限域扩张，我们就定义

deg f = [K(X) : K(Y )].

这样定义出的映射度是一个纯代数概念. 事实上在几何上这里的有限性通常意味

着常态（逆紧）性成立，并且总是存在稠密开集 U ⊂ Y 使得对任意 y ∈ U，纤维

f−1(y) 恰好由 deg f 个点构成. 而对 Riemann 面来说，我们就可以证明两种映射度

的定义是相容的.

1.4 Sard 定理：证明与应用

1.4.1 Sard 定理的证明

为了陈述 Sard 定理，我们需要首先声明 Lebesgue 零零零测测测集集集在光滑流形上对应的

概念. 注意，在只有光滑结构时，我们不能为流形赋予一个良好定义的测度，这一点
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不同于我们知道的每个流形都能被赋予一个度量结构，因为通过局部坐标卡赋予欧

氏空间所带测度的方法很明显不是典范的. 然而即便如此，我们可以用坐标卡拉回的

方法典范地讨论一个集合是否是 Lebesgue 零测集，对它的讨论并不需要引入测度概

念.（但需要光滑概念，详见后文）回忆一个集合 A 在欧氏空间 Rn 上零测指的是它可以

被可可可数数数个个个测度（体积）和足够小的矩体所覆盖：

inf{
∞∑
i=1

m(Ei) : Ei 是矩体, A ⊂
∞⋃
i=1

Ei} = 0.

其中矩体 Ei =
∏n
j=1[aj , bj ] 的测度被定义为 m(Ei) =

∏n
j=1(bj − aj). 关于 Lebesgue

零测集最重要的性质莫过于

• 可可可数数数个零测集的并仍是零测集.

这样根据流形的第二可数性，它可被可数个坐标卡所覆盖. 于是，对一个集合零测的

判定可以化归为在每个坐标邻域上集合的零测性，这样就可以拉回到欧氏空间上来

讨论零测性了，我们只需要验证在不同坐标卡选取下零测的概念不改变，也就是零

测性在光滑映射下被保持.

Lemma 1.4.1. 给定开集 U ⊂ Rn，光滑映射 f : U → Rn 把零测集映到零测集.

Proof. 考虑零测集 E ⊂ U . 首先在每个点 x ∈ E 附近考虑标准开球 Ux, Vx 使得

x ∈ Ux ⊂ Ux ⊂ Vx ⊂ U . 根据 Lindelöf 性，存在可数个 Ux 的并能覆盖整个 E，从而

E =
⋃
x(E ∩ Ux)，因此只需证明每个 E ∩ Ux 的像集零测.

由于 f 在整个 Ux上有定义，因此可对其利用微分中值定理，得到对任意 y ∈ Ux

均有

|f(x)− f(y)| ≤ |f ′(ξ)| |x− y| , ξ = tx+ (1− t)y for some t ∈ [0, 1].

根据 Ux 为紧集，|f ′(ξ)|存在一致上界M . 由于 m(Ux∩E) = 0，取一列开球 {Bi}覆

盖 Ux∩E，满足
∑
m(Bi) < ε. 设 Bi = Bri(xi)，那么所有开球的像的测度能被 ε控

制住，具体而言有 f(Bi) ⊂ BMri(f(xi))，并且 m(BMri(f(xi))) = Mnm(Bi). 由于

这些 f(Bi)能覆盖整个 f(Ux∩E)，因此开集列 BMri(f(xi))能覆盖整个 f(Ux∩E)，

m(f(Ux ∩ E)) ≤
∞∑
i=1

Mnε.

令 ε→ 0 即得结论.

Remark. 如果 f 只是连续函数，利用 Cantor-Lebesgue 函数很容易构造出反例，进

而对拓扑流形无法良定义零测集的概念. 此外，显然零测集在光滑映射下的原像不一

定是零测集.

现在我们就可以良定义下述概念：

Definition 1.4.2 (零测集). 设 M 是光滑流形，A 是 M 的子集. 若对任意坐标卡

φ : U → V ⊂ Rn，均有 φ(U ∩A) 是 Rn 中的零测集，则称 A 是 M 上的零测集.
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现在我们终于可以来陈述 Sard 定理：

Theorem 1.4.3 (Sard). 对任意光滑映射 f : M → N，f 的临临临界界界值值值集合在 N 中是

零测集.

Example 1.4.4. 我们可以来验证几个典范的例子.

对典范浸入 i : Rn → Rm, (x1, . . . , xn) → (x1, . . . , xn, 0, . . . , 0)，所有点 x ∈ Rn

都是临界点，于是整个 i(Rn) 是临界值，但由于它是 Rm 的低维数子空间，所以的

确是一个零测集（但显然可以不是有限集，可数集）.

对典范淹没 p : Rm → Rn, (x1, . . . , xm) → (x1, . . . , xn)，每个点都是正则点，所

以没有临界值，这是我们所期望的最好情况.

对常值映射 f = const c，只有 c 这个点是临界值，其余点没有原像，从而是正

则值，故临界值集合零测.

下面开始证明 Sard 定理. 虽然我们花了一些力气验证定义对流形有效，但是整

个问题仍然几乎是仅关于欧氏空间的. 我们可以对命题进行第一步简化：由于 M,N

都是第二可数的，因此可用可数个坐标卡 {Ui}∞i=1, {Vj}∞j=1 分别覆盖 M,N . 首先在

定义域上，如果能证明每个 fi : Ui → N 给出的临界值零测，那么整个 f 的临界值

也零测. 再在值域上，分别考虑每个 fij : f
−1
i (Vj) → Vj 给出的临界值，从而只需证

明每个 fij 给出的临界值零测. 拉回到欧氏空间上，我们发现只需证明：

Proposition 1.4.5. 给定开集 U ⊂ Rn，则 f : U → Rm 的临界值构成集合零测.

比较简单的是 n < m的情形，此时临界值集合就算 im f . 将 f 视为 U×Rm−n →

Rm 的映射，由于 U ×{0} 在 U ×Rm−n 中是零测集，因此整个 im f 在 Rm 上零测，

从而临界值构成集合零测.

再考虑 n ≥ m的情形. 采取归纳法（这一想法的来源是，我们可以通过选取不同的坐标

卡使 f 的形态变好，比如在某个分量上恒同，这样关于临界性得到讨论就可以降维），当 n = 0

时命题显然成立. 设 f = (f1, f2, . . . , fm). 记 C 为全体临界点点点所成集合，那么需证

m(f(C)) = 0. 考虑

Cj = {x : ∂αfi(x) = 0, ∀ i, ∀ |α| ≤ j}.

（这个分类看上去很奇怪，因为 C1 其实就给出了满足 df |x = 0 的点集，在整个 C 中理应算作一

个“小情形”）首先来看 f(C \ C1).

Proposition 1.4.6. f(C \ C1) 是零测集.

Proof. 对每个 x ∈ C \ C1，存在 i, j 使得
∂fi
∂xj

|x ̸= 0，不妨设 i = j = 1.（由于 i, j 仅

有有限种选择，因此只需要考虑满足
∂f1
∂x1

|x ̸= 0 的临界点集合 S，并证明 f(S) 零测）考虑

g : (x1, x2, . . . , xn) 7→
(
f1(x1, . . . , xn), x2, . . . , xn

)
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dg 对应的矩阵形如

 ∂fi
∂xj

0

∗ id

，从而在 x 处可逆. 由反函数定理，在 x 附近 g 给

出一个同胚，设 g 给出 x ∈ Ux → Vx 的同胚. 关键在于注意到 f ◦ g−1 : Vx → Rm

因为同胚的原因，其临界值集合就是整个 f(S ∩ Ux)（相当于说，如果有线性同构 S 和线

性映射 T，那么 imT = imT ◦ S），因此对每个 x ∈ S 考虑对应的一个 Vx，那么每个

f ◦ g−1|Vx 的临界值之并就给出 f(S). 更细致地进行讨论，根据欧氏空间的第二可数

性可选择可数个 xi 使得

∞⋃
i=1

Uxi =
⋃
x

Ux ⇒ f(S) =
∞⋃
i=1

f(S ∩ Uxi) =
∞⋃
i=1

Crit(f ◦ g−1 : Vxi → Rm).

从而要证 m(f(S)) = 0，只需证明 f ◦ g−1 : Vx → Rm 的临界值零测，由于之后证明

和 x 无关，下面省略和定义域有关的标注（做到这里，我们发现就是利用可数可加性把 f

的临界值零测化归为证明更好的函数 f ◦ g−1 临界值零测）. 注意到 f ◦ g−1 在第一个分量上

是恒同，因此可对每个 t ∈ R 定义

ht : Vx ∩ ({t} × Rn) → Rm−1, ht(t, ·) =
(
f2(t, ·), . . . , fm(t, ·)

)
.

把 ht 视为 Rn−1 中的开集到 Rm−1 的映射，故可利用上归纳假设. 此时在每个点

(y1, y2, . . . , yn) 处，如果 d(f ◦ g−1) 不是满射，那么 dhy1 在 (y1, . . . , yn) 处也给不出

满射. 这给出

Crit(f ◦ g−1|Vx) ⊂
⋃
t

{t} × Crit(ht).

根据归纳假设，每个 Crit(ht) 都零测. 虽然 f ◦ g−1 的临界值包含于这不可数个集合

的并，但是实际上 Crit(ht) 包含了 Crit(f ◦ g−1) 中第一个分量为 t 的点构成的集合，

所以事实上它们给出沿第一个坐标的“切片”. 根据 Fubini 定理，

m(Crit(f ◦ g−1)) =

∫ +∞

−∞
m(Crit(ht)) = 0.

这就证完了 m(C \ C1) = 0.

稍微改装一下证明，就可以给出 m(Ci \ Ci+1) = 0，事实上有下面更强的

Proposition 1.4.7. 给定函数 u : U → Rm 并记 U ′ = {x : u1(x) = 0,
∂u1
∂x1

̸= 0}，

则 Crit(f |U ′) 零测.

Proof. 考虑

g : (x1, . . . , xn) → (u1(x1, . . . , xn), x2, . . . , xn)

对每个 x ∈ U ′，设 g 在 x ∈ Ux → Vx 上是同胚（注意这里 U ′ 可能不是开集，但是只需要

Ux ⊂ U 就可以），并且根据可数性可取出一列 xi 使得

∞⋃
i=1

(Uxi ∩ U ′) = U ′.
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因为 Crit(f |Uxi∩U ′) = Crit(f ◦ g−1|Vxi∩g(U ′))，所以只需证明 Crit(f ◦ g−1|Vxi∩g(U ′))

零测.

注意到 g(U ′)的第一个分量始终为零，所以 Vxi ∩g(U ′)落在 {0}×Rn−1∩Vxi :=

V ′ 内，这是一个 n− 1 维开集，考虑 f ◦ g−1 在这个开集上的限制映射 f ◦ g−1，归

纳假设给出 Crit(V ′) 零测. 并且如果 y 是 f ◦ g−1 的正则点，那么就一定是 f ◦ g−1

的正则点，从而 f ◦ g−1|V ′ 上的临界点一定是 f ◦ g−1 的临界点，故

Crit(f ◦ g−1|V ′) ⊂ Crit(f ◦ g−1).

因此 Crit(f |U ′) 零测，证毕.

Remark. 对比一下两种情况下坐标变换的异同：都给出局部同胚并利用可数可加性

使得只需证明局部上临界值零测，不同点是在 1.4.6 中坐标变换使得在一个坐标上是

恒同映射，因此可以把定义域和值域都降一维，然后对每一层都可以用归纳假设证

明零测，由 Fubini 定理这些零测的层拼起来也零测. 而在 1.4.7 中坐标变换和要考虑

的 f 相对分离，只能对定义域将一维，实际上这个坐标变换起到了一个类似子流形

坐标卡的作用，把大集合 Ux 同胚到欧氏空间的同时把小集合 U ′ ∩ Ux“拉平”到子

空间 {0} × Rn−1 内，从而实现降维.

特别地，对每个 |α| ≥ 1令 u = ∂αf 容易得到对每个 i ≥ 1，都有 m(Ci\Ci+1) =

0.（对 |α| = 0 不行，因为我们没法控制 f(x) 的值，但在 C1 中已经有 df |x = 0 之类的条件）

但这还不足以完成证明，因为全体 Ci 的并并不得到 C（可能存在某个点的任意阶偏

导数均为零）因此我们需要利用另一种方法证明当足够高阶微分取零时自动有其像

集为零. 下面的命题可以看作引理 1.4.1 的进一步定量细化（它们的思想是一样的）.

Proposition 1.4.8. 给定 f : U → Rn，存在 N 使得对任意闭方块 I ⊂ U 有

m(f(CN ∩ I)) = 0.

Proof. 不妨设方块边长为 δ. 如果 x ∈ CN，那么对任意 y ∈ I 通过 Taylor 公式可

知：

f(y)− f(x) =
|x− y|N+1

(N + 1)!
dN+1|x(ξ, . . . , ξ), |ξ| ∈ [0, 1].

最后一项作为关于 x, ξ 的有界闭集中的函数存在上界，即存在仅和 f 有关的常数 C

使得

|f(y)− f(x)| ≤ C · |x− y|N+1
.

现在待定 l，将 I 每条边 l 等分，划分为 ln 个小方块之并. 如果一个小方块中含有

CN 中的点 x，那么由于小方块内其它点 y 距离 x 不超过
√
n(δ/l)，所以 f(y) 到

f(x) 的距离不超过 D · l−N−1，其中 D 是仅依赖于 f, I 的常数. 所以这个小方体的

像的测度不超过 E · l−m(N+1). 由于划分只产生了 ln 个小方体，因此

m(f(CN ∩ I)) ≤
∑

Ij :∃ x∈CN , x∈Ij

m
(
f(Ij)

)
≤ E · ln−m(N+1).
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从而对固定的 n，总存在 N 使得 n −m(N + 1) < 0. 由于常数 E 与 l 选取无关，

因此令 l → 0 就得到 m(f(CN ∩ I)) = 0，并且 N 的选取也和 I 的边长 δ 无关，证

毕.

根据上面的命题，首先取定仅依赖于 m,n 的 N，由于用可数个闭方体 I ⊂ U

能够覆盖整个 CN（在每个点处取一个闭方体含于 U，然后用它们的内部挑选出

可数子覆盖），因此 m(f(CN )) = 0. 从而结合上之前所有的命题，就归纳证明了

m(f(C)) = 0，Sard 定理证毕.

我们对代数几何中的“Sard 型”命题作一个介绍. 在代数几何中，对一个仿射

簇可能存在形态不好的点，它们被称之为奇奇奇异异异点点点，在奇异点附近仿射簇甚至不构成

流形. 给定一个态射 f : X → Y，我们可以用其纤纤纤维维维是是是否否否光光光滑滑滑来对应所谓的正则

值概念. 由于我们使用的 Zariski 拓扑没有良好的测度论概念，而我们又直观感受过

Zariski 开集一般都都很大，闭集相对较小，因此在代数几何中我们常常用真真真闭闭闭子子子集集集

或者维维维数数数下下下降降降来替代“测度为零”，用非非非空空空开开开集集集来替代“几乎处处”.

首先对于光滑点和奇异点我们有一个“Sard 型”结论.

Theorem 1.4.9 (奇异点的闭性与低维性). 设 X 是域 k 上的仿射簇，则 X 的奇异

点集 Sing(X) 构成 X 的一个 Zariski 闭闭闭子子子集集集. 若域 k 的特征为零，则我们还有

dimSing(X) < dimX.

于是光滑点集构成 X 中的一个稠稠稠密密密开开开集集集.

与临界值相关的“Sard 型”结论被称为 Generic Smoothness. 回忆 1.3.9 中正

则支配映射的概念，我们有如下结论成立：

Theorem 1.4.10 (Generic Smoothness). 设 k 为特征零的代数闭域，X 是光滑

代数簇，f : X → Y 是代数簇之间的正则支配映射. 则存在一个非非非空空空 Zariski 开开开子子子

集集集U ⊂ Y（从而也是稠密的），使得限制态射 f |f−1(U) : f
−1(U) → U 是一个光光光滑滑滑态态态射射射，

从而对任意 y ∈ U 均有其纤维 f−1(y) 是光滑的.

于是在这样的假设下“几乎所有点”都是关于 f 的“正则值”. 结合之前对映

射度的讨论，我们得到：

Proposition 1.4.11. 设 f : X → Y 是一个有限支配映射，则存在一个 Zariski开集

Y0 ⊂ Y 使得对任意 y ∈ Y0，其拓扑原像集大小就是映射度 deg f = [K(X) : K(Y )].

在最后我们可以来叙述 Zariski 主定理，它告诉我们常态（proper）态射的纤维

在什么条件下是连通的，以及如何将“非有限”的态射分解为“有限”部分和“纤

维连通”部分.

Theorem 1.4.12 (Zariski连通性定理). 设 f : X → Y 是一个常态（proper）的正

则支配态射，其中 X,Y 是代数闭域上的不可约代数簇。如果 Y 是正规的，那么：
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1. 所有纤维 f−1(y) 都是连通的.

2. 存在 Y 中的一个稠密开集 U，使得对于任意 y ∈ U，纤维 f−1(y) 不仅连通，

而且是几何连通的（在代数闭包上保持连通）.

这个定理将 Generic Smoothness 的”一般纤维光滑”提升到了”所有纤维连通”的

更强结论，即纤维的”连通性”不会发生跳跃.

Theorem 1.4.13 (Zariski主定理：拟有限版本). 设 f : X → Y 是一个拟有限（即

所有纤维都是有限集）的常态态射，且 Y 是正规的. 那么 f 本身就是一个有限态射.

这直接关联到有限支配态射的映射度，它使得映射度可被全局定义.

我们接下来利用 Sard 定理给出一些应用，由此可以看出它在微分拓扑中的奠基

地位.

1.4.2 Whitney 嵌入定理

我们在很早之前就有提及流形是否能被实现为欧氏空间的子流形的问题，该命

题在历史上具有重要的地位，它说明了内蕴和外蕴的流形定义是相同的. 事实上，我

们我们还能对嵌入的维数给出上界：

Theorem 1.4.14 (Whitney). 任意 n 维光滑流形都能嵌入在 R2n+1 中，浸入在

R2n 中.

需要指出 Whitney 嵌入定理并非给出最优的界. Whitney 自己使用了不同的技

术证明了强强强 Whitney 嵌嵌嵌入入入定定定理理理，它表明当 m ≥ 2 时上述嵌入的维数还能再降低 1

维. 再往后，人们证明了根据维数的二进制展开结果，嵌入维数还能进一步降低. 由

于证明的手法颇为不同，这里不再作介绍.

我们接下来专注于定理 1.4.14 的证明. 证明大致分为两步，第一步是先把流形

嵌入到维数足够大的欧氏空间中（然而正是这一事实的证明属实令我感到惊讶：因为当我第

一次看到该命题时觉得毫无下手之处，可能需要用很高深的技术，但我们只需要借助单位分解就

够了！），然后再通过 Sard 定理寻找一个好方向投影到低维度的空间中. 我们会发现

单浸入性质是容易通过好方向的选取而保证的，但是要使 f 给出 M → f(M) 的拓

扑同胚这一点很难说明. 所幸我们有 1.3.21，这保证了 M 是紧流形时证明可直接完

成，而当 M 是非紧流形时我们只用适当调整使得 f 是常态映射即可.

将紧流形嵌入在欧氏空间中的命题证明细节相对较少，我们先对此证明之.

Proof for 1.4.14, closed manifold version. 证明分为以下几个步骤：

Step 1. 紧流形 M 总可以被有限个坐标卡覆盖. 即存在有限个 φi : Ui → Vi ⊂

Rn, i = 1, 2, . . . , ℓ 使得这些 Ui 给出 M 的一个开覆盖. 现在选取从属于这些 Ui 的一

个单位分解 {χi}.
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我们这样来考虑这个命题：不要想在几何上是如何把一个流形嵌入在欧氏空间

中的，而是考虑如何用一些坐标去“识别”出一个点（从而保证了单性），如果选用

的函数是自然的那么会容易保证浸入性成立. 现在从属于这些坐标卡的单位分解映射

可以识别出一个点所在的坐标卡位置，那么只要再知道该点在这个坐标卡上的坐标

就完全确定了该点. 为了让坐标卡映射成为全局函数，我们只需考虑 φi(x)χi(x)（作

为 n 个函数）. 令

Φ : x 7→ (χ1(x), χ1(x)φ1(x), . . . , χℓ(x), χℓ(x)φℓ(x))

则若 Φ(x) = Φ(y)，则存在某个 i 使得 χi(x) = χi(y) > 0，这意味着 x, y ∈ Ui. 又因

为 χi(x)φi(x) = χi(y)φi(y)，所以 φi(x) = φi(y)，因此 x = y.

再证 Φ是浸入映射：只需证明对任意 x ∈M 和 v ∈ Tx(M)，如果 dΦ|x(v) = 0，

那么 v = 0. 而

dΦ|x(v) = (dχ1|x(v),dχ1|x(v)φ1(x) + χ1(x) dφ1|x(v), . . . )

取 i 使得 x ∈ Ui，则 dΦ|x(v) = 0 表明 dχi|x(v) = 0 从而 dφi|x(v) = 0，但 φi 是线

性同构，所以 v = 0. 于是 Φ 是紧流形的单浸入，从而是嵌入.

Step 2. 现在 M 已经被嵌入在了 RN 中，嵌入映射记作 ι. 每个投影方向 [ℓ] 可以被

一个一维子空间所表示，它们构成流形 RPN−1. 我们考虑怎样的方向使得投影映射

同时保持单性和浸入性.

• 为了保证单射性，我们希望对任意 x, y ∈ M 都有 x − y 所指方向与 [ℓ] 不同.

这可以换种方式叙述：对任意不同两点 x, y ∈ M，x − y 会唯一确定一个方向

[v]，我们希望选择的 [ℓ] 避开所有这样的方向. 事实上，所有这样的点可实现

为一个光滑映射的像：

f :M ×M/∆ → RPN−1, (x, y) 7→ [x− y].

其中 ∆ = {(x, x) ∈ M × M} 是所谓对角线流形，根据流形的 Hausdorff 性

可知 ∆ 是闭集，因此 M ×M/∆ 的确是个流形，它的维数是 2n. 所以只要

2n < N − 1，那么利用 Sard 定理 1.4.3，f 的像集是零测集，从而几乎所有方

向都能保证单射性成立.

• 为了保证浸入性，只需让投影方向不处于任意点的（外蕴）切空间中即可. 为了

考虑所有切向量嵌入到 RN 中所得方向，回忆切丛和微分的概念 1.2.11，

g : TM
dι−→TRN ∼= RN × RN → RPN−1, (p,v) 7→ (ι(p),dι|p(v)) 7→ [dι|p(v)]

描述了所有可能的切向量方向，并且这也是一个光滑映射. 由于 TM 也是 2n

维流形，所以只要 2n < N − 1，那么利用 Sard定理 1.4.3，g 的像集是零测集，

从而几乎所有方向都能保证单射性成立.
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于是几乎所有方向都能同时保证单射性和浸入性成立，选择一个方向并投影，便可

将 M 嵌入到 RN−1 之中，直到 N = 2n+ 1 时无法再进行降维操作.

Remark. 我们一般用不到浸入在低 1 维数的结论，但是让我们看看在哪里可以加以

改进. 只需证明保证浸入性时可以省去一个维度. 这是因为我们可以用所谓球球球丛丛丛来代

替切丛，即只需要考虑所有单位切向量在欧氏空间上指代的全体方向就足够了. 球丛

是 2n − 1 维流形，因此 Sard 定理允许我们对 N = 2n + 1 给出降维投影，得到 M

在 R2n 中的浸入.

接下来我们考虑如何将一般流形嵌入到 R2n+1 中. 上面的证明步骤其实只在两

个地方用到紧性：一是在一开始选取有限个坐标卡时，二是紧流形上的单浸入给出

嵌入. 换句话说，不依赖于紧性我们能得到下述两个命题：

Proposition 1.4.15. 若光滑流形 M 可被有限个坐标卡覆盖，则它可以被单浸入到

足够大的欧氏空间中.

Proposition 1.4.16. 给定 N > 2n + 1，若 n 维光滑流形 M 可单浸入到 RN 中，

那么可通过复合一个降维投影单浸入到 RN−1 中. 进而，任意可被有限个坐标卡覆盖

的光滑流形 M 可单浸入到 R2n+1 中.

我们还需要一个引理：

Lemma 1.4.17 (光滑穷竭函数). 对任意光滑流形 M，存在光滑非负函数 f :M →

R 使得对任意 c ∈ R，f−1((−∞, c]) 都是 M 的紧子集.

Proof. 选取一列开集 U0 ⊂ U1 ⊂ . . . 使得 Ui 是紧集并且
⋃
Ui = M . 根据光滑

Urysohn 引理，存在函数 fi 在 Ui 上恒为 0，在 M −Ui+1 上恒为 1，并在 Ui+1 −Ui

上取值位于 (0, 1) 中. 现在考虑

f =
∞∑
i=0

fi.

fi 非负光滑函数，并且对任意 x ∈ Uk−Uk−1，则当 i ≥ k 时 fi(x) = 0，当 i ≤ k− 2

时 fi(x) = 1，而 fk−1(x) ∈ (0, 1]. 于是我们恰好有

Uk − Uk−1 = f−1([k − 1, k]).

所以 f−1((−∞, c]) 总是 M 的紧子集.

现在先对一般流形证明它可以被单浸入到足够高维数的欧氏空间中. 想法还是和

之前类似：我们要找一些函数并通过它们“识别”出所有点. 我们还可以使用前面刚

刚证明的结论，为一整个紧流形选取一个识别函数. 引理中的光滑穷竭函数起到一个

类似“等高线”的作用，帮助我们大概判断一个点所处的高度. 每两条整数等高线之

间给出一个紧流形，每个紧流形对应一个识别函数，为了让它全局可定义可以选取

单位分解让它支在其所在高度的附近. 现在虽然识别函数有无穷多个，但是很多识别
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函数离得很远：它们的支集（两两）交为空. 因此我们可以把这些识别函数相加，这

样对每个点我们可以通过其高度判断这个分量到底指示的是哪部分的坐标，进而确

定它所在的具体位置.

Proof. 取光滑穷竭函数 f，设 Mi = f−1([i, i + 1]). Mi 可以被有限个局部坐标卡覆

盖，我们适当缩小这些坐标卡，使得它们的并 Ni ⊂ f−1([i − 0.1, i + 1.1]). 由于 Ni

是 M 的开子集，因此也是一个光滑流形. 再根据它可被有限个坐标卡覆盖，根据命

题 1.4.16，存在单浸入 Φi : Ni ↪→ R2n+1.（我们有必要应用维数的一致性：即嵌入到的维数

R2n+1 和 i 无关，和覆盖坐标卡个数无关，否则没法把它们放在同一个识别函数中） 再为每个 i

选取光滑截断函数 χi 在 Ni 上恒为 1 并支在 f−1([i− 0.2, i+ 1.2]) 中.

现在考虑

Φ :M → R4n+3, x 7→ (f(x),
∑
i odd

χi(x)Φi(x),
∑
i even

χi(x)Φi(x)).

• 验证 Φ 为单射：若 Φ(x) = Φ(y)，设 f(x) = f(y) ∈ [i, i+ 1]，则 x, y ∈ Ni. 不

妨设 i 为奇数，则在奇数维无限求和中，除了 χi(x) = 1 之外其余求和项均为

零，这意味着 Φi(x) = Φi(y)，而根据 Φi 的单性可知 x = y.

• 验证 Φ 为浸入：对任意 x ∈ Ni，不妨设 i 为奇数，则奇数维无限求和输出结

果就是 Φi(x)，而 Φi 在 x 处是浸入，从而 Φ 在 x 处是浸入.

这就给出了从非紧流形 M 到 R4n+3 的的单浸入，根据降维投影的操作，M 可被单

浸入到 R2n+1 中.

最后，只需下面的命题就可完成一般情形 Whitney 嵌入定理的证明：

Proposition 1.4.18. 若光滑流形 M 可被单浸入到 RN 中，那么就能被逆紧（常

态）单浸入到 RN 中，从而可被嵌入在 RN 中.

Proof. 我们仅展示证明概要. 思路仍然是利用刚才的穷竭函数，为了直观我们可以先

想象在平面 R2 上有一个流形 M，那么可在 R3 中画出该流形在穷竭函数 f 下的图

像 Γf，由于 f 是逆紧的，因此这给出了 M → R3 的逆紧单浸入.（这是因为 R3 中紧

集的原像总是包含在 R 中一个有界闭区间在 f 下的原像，后者是一个紧集） 于是我们只需要

找一个好方向把它重新投回 R2 中即可. 为了保证逆紧性，我们需要在这个方向上的

任意向两端无限延伸的底面有界圆柱与 Γf 的交在 z 轴投影上为有界集. 但直接这样

做会遭遇技术上的困难，因为直观上图像可以完全位于整个圆柱之内.

我们可以在初始通过一步假设来规避掉这种情况：在一开始选取一个微分同胚

把 M 在 R2 上的像变到一个有界集，比方说 D(0, 1) 中，那么图像 Γf 就位于一个

无界正圆柱中. 现在对任意斜方向的无界圆柱，它和 Mf 的交总是位于两个圆柱的交

中，而这在 R3 中必定是一个有界集，从而它在 z 方向上投影也是有界集，这就给

出了逆紧（常态）性. 一般的 n 维情形的考量是完全类似的.



1 流形的微分结构 67

作为 Whitney 嵌入定理给出具体嵌入维数的第一个应用，我们考虑 n = 1 的情

形. 这告诉我们任意 1 维流形都可以被嵌入到 R3 中，浸入到 R2 中.

Definition 1.4.19 (纽结与链环). 一个从 S1 到 R3（或者 S3）的嵌入被称为一个

纽纽纽结结结，从
∐
S1 到 R3（或者 S3）的嵌入被称为一个链链链环环环.

更一般地，我们可以把任意 Sp 或者
∐
Spi 在拓扑空间 X（常用 Rn 与 Sn）中

的嵌入称为一个纽结/链环.

我们可以在不同范畴下研究纽结. 除了一般的拓扑范畴，较为常用的有 PL 范畴

（Piecewise Linear）以及 C∞ 范畴. 它们会导向不同的理论.

两个纽结被称为等等等价价价的，如果存在一个 X 的自同胚 Φ 把一个 Sp 的像变换到另

一个. 如果我们额外要求存在从 id 到 Φ 的同伦 h，使得每个 ht 都是自同胚，那么

称这两个纽结是同同同痕痕痕等等等价价价的. 平凡嵌入 Sp ↪→ Rn 或 Sp ↪→ Sn 给出的纽结被称为平平平

凡凡凡纽纽纽结结结.

Proposition 1.4.20. R4 中的任意 C∞ 纽结都同痕等价于平凡纽结.

Proof. 将该纽结记为 K. 根据 Whitney 嵌入定理 1.4.14 的证明，我们可在 R4 中选

取一个方向，使得沿该方向投影给出纽结在 R3 中的嵌入. 现在建立坐标系并以该投

影方向为 w 轴. 为了建立一个到 R3 的同痕，首先取

f : πw(K) → R, (x, y, z) 7→ w : (x, y, z, w) ∈ K.

则这是 πw(K) 上的光滑函数，然后将 f 延拓到整个 R3 中，那么

ht : (x, y, z, w) 7→ (x, y, z, w − t · f(x, y, z))

就给出一个同痕，把 K 同痕到三维空间中.

用同样的方法可以寻找一个 K 在平面 R2 上的性态足够好的投影.（这被称为正则

投影） 还是回顾 Whitney 嵌入定理的证明，在 R3 中虽然我们不能保证找到一个方

向保持单性，但是

f : K ×K/∆ → RP 2, (x, y) 7→ [x− y].

是相同维数流形之间的光滑映射. 特别注意由于 K 是一维，因此对角线上的点 (x, x)

也有良定义的像，即该点处唯一的切线所指的方向. 于是 f 成为相同维数紧流形之

间的映射，根据 Sard 定理存在正则值 [v]. 在相同维数时，正则值的原像附近总给出

局部同胚，因此其原像集是离散集，进而是有限集. 这说明向该方向投影时，至多产

生有限次“碰撞”，即在有限个点产生重叠，重数为有限值. 经过适当的微扰，我们

可以保证没有三次及以上的重点产生，每次相交都形如“十字架”，一根线被压在另

一根的下方. 这样的 R2 上的图可以完全表示该纽结.

下一步是证明给定一个纽结的图，可以通过有限次在相交点处上行和下行的手

术来将一个结变换为平凡结. 从任意非交叉点出发，我们绕某个方向沿图运动，每当
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第一次经过某个交叉点时，我们都适当进行手术使得走的是下行路线，直到运动回

初始点. 这样的运动可为每个点赋予一个时间函数 t，我们将 t 作为该点处的 z 轴坐

标，把这条道路提升到 R3 中，然后用一条竖直线段将其闭合，得到的结果与 K 同

痕. 这是合法的，因为我们总是先走下行道路再走上行道路，所以位于上方点的 t 值

总是比位于下方的要大. 又由于 z 轴值恰对应一个点，因此我们可做一个明显的“拉

直”操作把这一提升后的道路同痕到一条线段. 因此手术所得结果是一个平凡结.

最后，我们只需在局部上证明给定一个交叉的图案，我们能在 R4 中把交叉上下

翻转. 考虑

ℓ1 :(−1, 0, 0, 0)
move z−→ (−1, 0, 1, 0)

move x−→ (1, 0, 1, 0)
move z−→ (1, 0, 0, 0)

ℓ2 :(0,−1, 0, 0)
move y−→ (0, 1, 0, 0).

我们想证明能把 ℓ1 在四维空间中反转为

ℓ′1 : (−1, 0, 0, 0)
move z−→ (−1, 0,−1, 0)

move x−→ (1, 0,−1, 0)
move z−→ (1, 0, 0, 0)

这是容易的：我们可以 R2 为轴选取一个 R4 中的旋转：

ϕt : (x, y, z, 0) 7→ (x, y, z cos t, z sin t).

则

ϕt(ℓ1) : (−1, 0, 0, 0)
move z,w−→ (−1, 0, cos t, sin t)

move x−→ (1, 0, cos t, sin t)
move z,w−→ (1, 0, 0, 0)

ϕ0(ℓ1) = ℓ1 而 ϕπ(ℓ1) = ℓ′1，并且旋转过程中由于第四个维度取值总非零，因此不会

和一开始的纽结产生自交. 证毕.

而对 R2 或 S2 上的纽结，著名的 Jordan 曲线定理和 Schönflies 定理告诉我们

S2 上的任意闭曲线把空间分为两个连通分支，并且每个连通分支都同胚于 D2. 任意

两条 R2 上的闭曲线 K,L 之间存在同胚 Φ，作为圆盘边界之间的映射它可以被延拓

到整个圆盘上，从而给出 S2 → S2 的自同胚把 K 映为 L. 这就说明了 S2 上的任意

两个纽结是等价的，对 R2 也是如此.

因此，对纽结来说唯一有意义的研究维数是 3. 而在三维空间中，确实有各式各

样的不等价的纽结，人们发展了一系列的纽结不变量来研究它们. 更多的问题不再在

这里赘述.

在最后我们简单称述复流形和代数几何中嵌入问题的一些结果. 首先来看复流

形. 很明显我们不能奢求将任意复流形全纯嵌入到 Cn 中，这是因为对任意紧子流形

M ⊂ Cn，每个坐标分量均可以看作 M 上的全纯函数，但紧性告诉我们这样的全纯

函数必然平凡，于是 M 至多是单点集. 而非紧流形能否嵌入 Cn 有充要条件. 为了

陈述命题，我们引入一些概念：

Definition 1.4.21 (Stein 流形). 设 M 是复流形，O(M)是 M 对应的全纯函数环.
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• 称 O(M) 具有点点点分分分离离离性性性，如果对任意 p ̸= q ∈ M，存在 f ∈ O(M) 使得

f(p) = 0 而 f(q) ̸= 0.

• 称 O(M) 具有方方方向向向分分分离离离性性性，如果对任意 p ∈M，v ∈ TpM，均存在 f ∈ O(M)

使得 Dv|pf ̸= 0.

• 对任意 K ⊂M，定义其全全全纯纯纯闭闭闭包包包为

K̂ = {z ∈M : |f(z)| ≤ sup
K

|f | forall f ∈M}.

称 M 具有全全全纯纯纯凸凸凸性性性，如果对任意 M 中紧集 K，K̂ 都是 M 中紧集.

称 M 是 Stein 流形，如果 M 同时满足上述三个性质.

我们可以容易验证可逆紧（常态）嵌入 Cn 的子流形都是 Stein 流形：全体坐标

映射保证了点分离性和方向分离性. 设 K ⊂ M 在 Cn 中的像落在 {|z| < R} 中，那

么对任意 |w| > R，考虑 f = z · w 就有 |f(w)| = |w|2 > supK |f |，于是 K̂ 是有界

集，从而 K̂ 是有界闭集，所以是紧集. 有趣的是该命题的逆命题也成立：

Theorem 1.4.22 (Stein 嵌入定理). 任何 Stein 流形都可以逆紧嵌入到 Cn 中.

除了 Cn 之外，我们还比较关心一个复流形能否被嵌入在复射影空间 CPn 中.

这涉及到不少更深入的知识.1 另一方面，在古典代数几何中我们也总是研究能够被

嵌入在 kn 和 kn+1 − {0}/k× 中的代数簇. 即便如此，也存在不能被嵌入在 CPn 中

的复流形/代数簇. 我们可以用下面的命题作为替代物：

Theorem 1.4.23. 称一个代数簇是拟拟拟射射射影影影的，若存在一个从它到射影空间的浸入.

则任意光滑，拟射影的 n 维代数簇都可以被嵌入到 2n+ 1 维射影空间中.

1.4.3 Morse 理论

我们在 1.3 节中曾讨论过代数几何中的奇点附近的性质，这带给我们不少有趣

的几何现象. 而在微分拓扑里，临界点附近的性态和整个流形的拓扑之间有深刻的联

系. 回忆给定一个光滑函数 f : M → R，那么 p ∈ M 是临界点当且仅当 df |p = 0，

也就是 f 在 p 处的全体一阶导数均退化. 此时我们可以进一步探测 f 在临界点处的

性质：即去考察 f 在 p处的二阶微分结果.我们先考虑M 是 Rn 中一个开集的情形，

此时 f 对应的 Hessian 矩阵

Hf (p) =

(
∂2f

∂xi∂xj

∣∣∣∣
p

)
1≤i,j≤n

描述了 f 在 p 处的所有二阶性态. 我们可将 Hf (p) 视为一个关于 p 处切空间的二次

型：

Hf (p) : Rn → R, v 7→
∑
i,j

∂2f

∂xi∂xj

∣∣∣∣
p

· vivj .

1详见 John Lee,Introduction to Complex Manifolds, 第 10 章.
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对一般的 f : M → R，我们也可以在每点处的切空间上定义二次型 Hf (p) : TpM →

R，为此我们需要证明有如下交换性成立：

TpM

Rn Rn

R

dφ1 dφ2

d(φ2φ
−1
1 )

Hf (φ1(p))
Hf (φ2(p))

这是因为

∂2f

∂yk∂yℓ

∣∣∣∣
φ1(p)

=
∂

∂yk

(∑
i

∂f

∂xi
◦ (φ2φ

−1
1 )

∂xi
∂yℓ

)∣∣∣∣
φ1(p)

=
∑
i

(∑
j

∂2f

∂xi∂xj

∣∣∣∣
φ2(p)

∂xj
∂yk

∣∣∣∣
φ1(p)

∂xi
∂yℓ

∣∣∣∣
φ1(p)

+
∂f

∂xi

∣∣∣∣
φ2(p)

∂2xi
∂yk∂yℓ

∣∣∣∣
φ1(p)

)

=
∑
i,j

∑
j

∂2f

∂xi∂xj

∣∣∣∣
φ2(p)

∂xi
∂yk

∣∣∣∣
φ1(p)

∂xi
∂yℓ

∣∣∣∣
φ1(p)

.

于是在 Hessian 矩阵层面上

Hf (φ1(p)) = Jacφ2φ
−1
1
(φ1(p))

tHf (φ2(p))Jacφ2φ
−1
1
(φ1(p)).

因此可以良定义二次型 Hf (p) : TpM → R. Morse 理论主要研究 Hf (p) 非非非退退退化化化的情

形，此时我们称 p 是一个非非非退退退化化化点点点.（注意，这样说的前提是 p 为临界点） 根据线性代数

理论，非退化二次型在一组基下形如

Hf (p) ∼

−Ir 0

0 In−r

 , Hf (p)(x) = −x21 − · · · − x2r + x2r+1 + · · ·+ x2n.

由此得到的 r 是在差一个合同变换下的矩阵不变量，或者说是仅关于二次型本身的

量. 它可被解释为作为矩阵的的负特征值个数，或者作为二次型的最大恒正线性子空

间的维数. 在流形的语言中，它是一个与坐标卡选取无关的量，我们将 r 称为 f 在

p 处的指指指标标标. 在几何上，r 可以解释为使 f 递减的最大线性无关方向个数：这是因为

在这些方向上 f 的一阶导数为零而二阶导数为负.

相比前文映射在某点处的秩，指标的一个好性质是它永远是一个稳定量. 比如对

正定形式 Hf (p)(x) = x21 + · · ·+ x2n，如果 q 足够接近点 p，那么也会导致正定性：

Hf (q)(x) ≥ (1− ε)(x21 + · · ·+ x2n)− ε
∑
i ̸=j

|xixj |

≥ (1− (n+ 1)ε)(x21 + · · ·+ x2n) + ε
(
n(x21 + · · ·+ x2n)− (|x1|+ · · ·+ |xn|)2

)
> 0

当 ε 足够小时对任意非零的 x 恒成立. 从而对一般的非退化二次型 Hf (p)，其附近的

二次型正定空间和负定空间的维数都与它保持一致，从而拥有相同的指标和相同的

标准型.

令人惊讶的是，流形在非退化点附近的性态和流形所对应的同伦等价类高度相

关. 我们有如下（似乎在 Morse 理论众多书籍中都有的经典）例子：
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Example 1.4.24. 如图考虑一个竖直坐落在 R3 中的环面：

考虑 f : T 2 → R 是高度函数. 则图中 p, q, r, s 四个点为非退化的临界点，根据几何

意义容易判断它们对应的指标分别为 0, 1, 1, 2.

而另一方面，我们逐步考察 f−1((−∞, c)).

• 当 p < c < q 时，f−1
(
(−∞, c)

)
形如一个圆盘，它同伦等价于一个 0 维胞腔.

（0 维胞腔同胚于 D0）

• 当 q < c < r 时，f−1
(
(−∞, c)

)
形如一个无底圆柱，一开始的圆盘可等价为侧

面上的一点. 由于圆柱同伦等价于 S1，我们可将其同伦等价为在刚刚的 0 维胞

腔上黏贴一个 1 维胞腔（1 维胞腔同胚于 D1 ）.

• 当 r < c < s 时，f−1
(
(−∞, c)

)
形如环面去掉一个圆盘，它的同伦类为 T 2 挖

去一点，从而同伦等价于 S1∨S1，它即是上一步的 S1 再黏贴上一个 1维胞腔.

• 当 c > s 时，f−1
(
(−∞, c)

)
就是整个环面，它所在的同伦类可视为在上一步的

S1 ∨ S1 上黏贴一个 2 维胞腔.

如下一个引理和两个定理就描述了非退化点对流形的影响：

Lemma 1.4.25 (Morse 引理). 设 p 是关于 f 的指标 k 非退化点，那么存在 p 附

近的局部坐标卡 φ : U → V ⊂ Rn，使得 f ◦ φ−1 形如

f ◦ φ−1(x) = f(p)− x21 − · · · − x2k + x2k+1 + · · ·+ x2n.

特别地，存在 p 的邻域内仅有 p 一个临界点，于是全体非退化临界点构成离散集.

Theorem 1.4.26. 设 f 是 M 上的光滑函数，Mc = f−1([−∞, c]). 如果 f−1([a, b])

是 M 的紧子集且不含任何临界点，则 f−1([a, b]) 微分同胚于 f−1(a)× [a, b] 且该同

胚保持在 f 下的取值不变. 特别地，Ma 和 Mb 拥有相同的同伦类.

Theorem 1.4.27. 设 f 是 M 上的光滑函数，如果 f−1([a, b]) 是紧集并且其内部

恰含一个指标 k 临界点，则存在一个 k 维胞腔 ek ⊂ f−1([a, b]) 使得 ek ∼= Dk，

ek ∩ f−1(a) = ∂ek，并且 Ma 可以形变收缩为 Mb ∪ ek.

我们简要陈述这些命题的证明.
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Proof for 1.4.25. 通过任取一个局部坐标，我们不妨设一开始 U 就是 Rn 中以原点

为中心的小开球，并且 f(0) = 0. 则此时

f(x) = f(x)− f(0) =
n∑
i=0

∫ 1

0

∂f

∂xi

∣∣∣∣
tx

dt · xi

=

∫ n

i,j=0

∫ 1

0

∫ 1

0

∂2f

∂xi∂xj

∣∣∣∣
stx

ds dt · xixj .

为每个 x ∈ U，记

B(x) =

(∫ 1

0

∫ 1

0

∂2f

∂xi∂xj

∣∣∣∣
stx

ds dt

)
1≤i,j≤n

.

则 B(x) 是关于 x 的光滑矩阵值函数. 现在把 x 视为列向量，则 f(x) = xtB(x)x 并

且 B(0) = Hf (0). 我们的目标是在零点附近找到一个微分同胚 Φ : Uε → Rn，使得

f ◦ Φ−1(y) = yt ·

−Ir 0

0 In−r

 · y, ∀ y ∈ Φ(Uε).

我们发现如果 Φ(x) = A(x) · x，那么就有

f ◦ Φ−1(y) = f(A(Φ−1(y))y) = yt ·
(
A−1(Φ−1(y))

)t
B(Φ−1(y))

(
A−1(Φ−1(y))

)
· y.

于是我们希望取 A(x) 使得 A−1(x)tB(x)A(x) =

−Ir 0

0 In−r

 恒成立，换言之对一
块小邻域内的 x 同时对角化.

首先根据指标的非退化性，存在一个零点附近的邻域内所有 B(x)对应的指标均

为 r. 于是的确存在矩阵 Q(x) 使得

Q(x)t ·B(x) ·Q(x) =

−Ir 0

0 In−r

 .

我们能用 B(x) 的各个分量来具体表示出 Q(x)，回忆线性代数中二次型的对角化过

程其实就是配方与换元的过程，比如说

a11x
2
1 + 2a12x1x2 + a22x

2
2 = (

√
a11x1 +

a12√
a11

x2)
2 + (

√
a22 −

a212
a11

x2)
2

那么就可以做变量替换，系数矩阵就是上面所求的 Q. 这里展示的开根系数均正时

的情形. 根据非退化时指标的稳定性在一个邻域内开根所涉及的项符号不会发生改

变，因此在这个邻域内 Q 的表达式光滑依赖于矩阵 B. 所以，如果取

Φ(x) = Q(x)−1 · x,

那么 Φ 是关于 x 的光滑映射，并且在 0 点处

∂Φ

∂xi

∣∣∣∣
x=0

= lim
λ→0

Q(λei)
−1 · λei
λ

= lim
λ→0

(Q(λei)
−1)i = (Q(0)−1)i.

其中 ei 指代恰好第 i 个分量为 1 的单位向量，矩阵下标 i 指的是矩阵的第 i 列. 根

据非退化性易知在 Q(0) 是非退化矩阵，由此可知 dΦ 在 0 处是线性同构，所以 Φ

在 0 附近给出局部微分同胚. 这就得到了满足 Morse 引理的坐标卡，证毕.
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Sketch of Proof 1.4.26. 该命题的证明会利用到向量场的相关概念，这超出了该讲义

的范围，但却是容易理解的，感兴趣者可以参考相关教材.2 对任何光滑流形 M，利

用单位分解容易为其赋予一个 Riemann 度量.（切空间上的内积）. 这样在远离临界点

处，我们可用内积把线性函数 df |p : TpM → R 对应到切空间上一个向量，即定义

∇f |p 满足

⟨∇f |p,v⟩ = df |p(v).

则 ∇f 给出 f−1([a, b]) 上的一个处处非零的光滑向量场（这是基于无临界点性质），于

是诱导出一个单位向量场. 这一向量场给出一个流，我们可以让 f−1(a) 从 a 时刻起

沿着这个流匀速上升到 f−1(b)，那么在 t 时刻就恰好上升到 f−1(t). 这就给出保 f

取值的微分同胚 F : f−1(a)× [a, b] → f−1([a, b])：

• 单射性是基于流的性质得到，再说的清楚些即是由于常微分方程解的存在唯一

性：如果两条流汇聚在某点，那么其中某一条会包含另一条. 又根据向量场上

没有奇点，因此在任意点在局部上都位于某个流中，然后通过 [a, b] 的紧性可

以把流延拓到两端边界上，这就说明了满性.

• 浸入性是因为流所指的切向和水平集 f−1(t) 在 M 中张出的切空间在度量下正

交，特别地并不落在水平集中. 于是在每点处 dF 给出切空间之间的线性同构.

• 最后的整体同胚性根据条件 f−1([a, b]) 是紧集以及 1.3.21 得到.

Sketch of Proof 1.4.27. 简单来说，这是 Morse 引理导致局部性质唯一确定所直接导

致的结果. 根据上一个定理 1.4.26，设唯一的临界值为 c，则我们只需要对某个足够

小的 ε 考虑 Mc−ε 和 Mc+ε 之间的关系. 我们可以选择 p 附近的一个满足 Morse 引

理的坐标卡，然后取小的 ε 使得 f−1(c+ ε) 和 f−1(c− ε) 都和 U 相交，这样变化都

发生在该坐标卡以内. 则在坐标卡附近的形态形如下图：

2除了经典的 J.Milnor, Morse Theory 之外，W.Hirsch, Differential Topology, GTM33 的 6.2 节也对

此有叙述.
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左右两瓣双曲线以内的区域都属于 Mc−ε，上下两瓣双曲线以外的区域都属于

Mc+ε：

Mc−ε ∩ U = {x : −x21 − · · · − x2k + x2k+1 + · · ·+ x2n ≤ −ε};

Mc+ε ∩ U = {x : −x21 − · · · − x2k + x2k+1 + · · ·+ x2n ≤ ε}.

我们先在内侧和外侧钦定形变收缩，然后再延拓到中间区域上. 具体而言，在 Γ1 内，

注意到如果我们在前 k 个分量上投影，Mc−ε ∩U 投影结果落在 x21 + · · ·+ x2k ≥ ε 外

侧，而Mc+ε∩U 的投影覆盖了整个 k维平面，因此经过垂直投影，可以把 Γ1∩Mc+ε

形变收缩到 (Γ1 ∩Mc−ε) ∪ ek，其中 ek 为圆盘 x21 + · · ·+ x2k ≤ ε. 而在 Γ2 外部，我

们通过向量场 ∇f 把 Mc+ε − Γ2 形变收缩到 Mc−ε − Γ2 上. 最后在两个区域之内完

成技术性的过渡将两个向量场连接起来即可.

有了上述两个引理之后，考虑下述函数来研究流形的整体性态就变得十分自

然：

Definition 1.4.28 (Morse 函数). 如果光滑函数 f : M → R 满足任何临界点都是

非退化的，那么称其为 Morse 函函函数数数.

若 M 是紧流形，则 f(M) 是 R 中的紧集，从而 f 在 M 中存在取最大最小值

的两点.（我们不考虑平凡的常值函数情况，它一定不给出 Morse 函数.） 我们在数学分析中

知道在欧氏空间中极值点都满足 df = 0，所以这两点都是 M 中的临界点. 又因为在

任意方向上函数值都减小/上升，于是这两点的指标分别为 n 和 0. 下面的命题描述

了这种临界情况：

Theorem 1.4.29 (Reeb). 设 M 是 n 维光滑闭流形. 如果存在一个 Morse 函数

f :M → R 恰含两个临界点，则 M 同胚（注意，不是微分同胚）于球面 Sn.
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Sketch of Proof 1.4.29. 我们已经知道两个临界点的指标分别为 0 和 n，将它们记为

S 和 N . 那么根据 Morse 引理，在 S,N 附近分别存在一个邻域，使得 f 在其上形

如

f(x) = ±(x21 + x22 + · · ·+ x2n).

也就是说对足够小的 ε > 0，f(S) + ε 和 f(N)− ε 的原像集都微分同胚于 Sn−1. 现

在根据定理 1.4.26，由于 f(S) + ε 和 f(N)− ε 之间没有临界值，所以有微分同胚

f−1([f(S) + ε, f(N)− ε]) ∼= f−1(f(S) + ε)× I ∼= Sn−1 × I.

根据水平集划分，M 被分为三个部分 A−, A,A+，它们分别微分同胚于 Dn, Sn−1×I

和 Sn，并且在边界上都微分同胚于 Sn−1. 但是我们不能保证整体的到 Sn 的微分同

胚性成立：我们可以在一端比如说先把 A− 微分同胚到球面底部，这诱导出边界上

的微分同胚 Φ : f−1(f(S) + ε)
∼→ Sn−1，这可被延拓为

Φ̃ : A
∼→ f−1(f(S) + ε)× I

Φ×id−→ Sn−1 × I.

但是 Φ̃ 所诱导出的 f−1(f(N) − ε)
∼→ Sn−1 可能并不能延拓为 A+ → Dn 的微分

同胚，这是因为 Φ̃ 所给出的传导过程可能导致“扭曲”，进而无法和原本资料里的

A+ → Dn 相容.

但好在这件事情在连续范畴中总能办到：即对任意边界自同胚 f : ∂Dn → ∂Dn，

它总能连续延拓为 Dn → Dn 的自同胚，直接利用线性延拓

f̃ : Dn → Dn, f(x) =


|x| · f

(
x

|x|

)
, x ̸= 0;

0, x = 0.

即可（我们容易看出这大概率不是一个光滑同胚，但只要去掉极值点就能给出一个光滑同胚，所

以其实差的并不远）. 这就得到了从 f 到 Sn 的拓扑同胚.

为了由刚刚建构的 Morse 理论获取流形的整体性质，我们需要证明 Morse 函数

的存在性. Sard 定定定理理理提供了最后一块拼图.

Lemma 1.4.30. 设 U 是 Rn 中的开集，f : U → R 是光滑函数. 则对几乎所有

a = (a1, . . . , an) ∈ Rn，

fa(x) = f(x) + a1x1 + · · ·+ anxn

是 U 上的 Morse 函数.

Proof. 考虑光滑映射

ga : U → Rn, g(x) =

(
∂fa
∂x1

, . . . ,
∂fa
∂xn

)
=

(
∂f

∂x1

, . . . ,
∂f

∂xn

)
+ (a1, a2, . . . , an).
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则 x 是 fa 的临界点当且仅当 ga(x) = 0，即 g0(x) = ga(x) − a = −a. x 是 fa 的非

退化临界点当且仅当 g0(x) = −a 且 dga|x 非退化，这等价于 dg0|x 非退化.

fa 是 Morse 函数等价于所有临界点都是非退化的，也就是只要 g0(x) = −a 就

有 dg0|x 非退化，这即是说 −a 为 g0 的正则值. 根据 Sard 定理 1.4.3，几乎所有值

都是正则值，于是几乎所有 a 都使得 fa 是 Morse 函数.

Proposition 1.4.31 (Morse 函数存在). 对任意光滑流形 M，存在 M 上的 Morse

函数.

Proof. 根据 Whitney 嵌入定理 1.4.14，存在嵌入 ι : M → RN . 现在我们可以借助

RN 上的坐标函数 ι1, ι2, . . . , ιN，事实上可以证明：

对几乎所有 a ∈ RN , fa(x) = a1ι1(x) + · · ·+ aN ιN (x) 都是 M 上的 Morse 函数.

对任意 p ∈M，dι|x : TpM → RN 是单同态. 因此存在 n 个分量 i1, . . . , in 使得

M
ι−→RN π−→Rn, x 7→ (ιi1(x), . . . , ιin(x))

在 p 处诱导出切空间上的线性同构，因此在 p 的邻域 Np 上给出局部同胚. 对任意

x ∈ Np，x 是 f 的临界点/非退化点当且仅当 (ιi1(x), . . . , ιin(x)) 是 π(ι(Np)) ⊂ Rn

在相应映射下的临界点/非退化点.

现在固定 ai1 , . . . , ain 以外的所有值（将它们构成坐标称为 b），设 fa(x) =

gb(x)+ai1ιi1(x)+ · · ·+ainιin(x)，则对 π(ι(Np))中的点来说，fa 就形如 gb+ai1x1+

· · · + ainxn，xi 是向第 i 个分量的投影. 根据上一个引理的结论，对几乎所有的

(ai1 , . . . , ain) 均有 fa 是 π(ι(Np)) 上的 Morse 函数，从而也是 Np 上的 Morse 函数.

回忆在 Sard 定理证明中我们使用过 Fubini 定理，它告诉我们如果一个 RN 中的集

合在所有水平集上都是相应维数的零测集，则该集合是 RN 中的零测集，即

m(a : fa 在 Np 上不是 Morse 函数)

=

∫
RN−n
b

m((ai1 , . . . , ain) : gb + ai1ιi1 + · · ·+ ainιin 在 Np 上不是 Morse 函数) db

=0.

由于 M 是第二可数的，因此存在可数个坐标卡 Np 能覆盖整个 M . 而我们知道可数

个零测集的并仍然是零测集，因此使得 fa 在 M 上不是 Morse 函数的 a 构成零测

集. 特别地，在整个 M 上定义的 Morse 函数存在.

Remark. 事实上有如下更强结论：Morse 函数构成 C∞(M ;R) 上的稠稠稠密密密开开开集集集，也就

是说我们可以选择任意靠近某个光滑函数的 Morse 函数. 该命题证明需要用到其它

技术性结果，我们略去.

经过微扰，我们可以得到形态足够好的 Morse 函数：
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Proposition 1.4.32. 对任意紧流形 M，存在 Morse 函数使得每个临界值的原像中

恰含有一个（非退化）临界点.

Proof. 首先根据上个命题，我们先选取任意一个 Morse 函数 f . 根据 Morse 引理

1.4.25，全体临界点构成离散集，分别记为 p1, . . . , pt.

我们能在每个 pi 附近选择一个满足 Morse 引理的邻域 Ui，并使得这些 Ui 两两

不交；然后选择在 pi 附近更小邻域 Vi 上恒为 1 且支在 Ui 上的光滑截断函数 ψi. 现

在考虑函数 fa = f +
∑
aiψi. 首先只有圆环

⋃
i(Ui − Vi) 内的点对应的微分映射可能

发生改变. 而这些点原本对应的微分映射都是非退化的，因此对足够小的 a 我们仍然

可以保证这些圆环上的点关于 fa 仍是非退化点. 于是非退化点仍然只有 p1, . . . , pk，

但是 fa(pi)被微扰为了 f(pi)+ai. 我们当然可以适当选取足够小的 ai 使得 f(pi)+ai

两两不同，这样这些点就输出不同的临界值.

现在可以证明如下的重要结论：

Theorem 1.4.33. 任意 n 维紧流形都同伦等价于一个至多 n 维有限 CW 复形.（该

结论对非紧流形也对. 所谓 CW 复形，直观上来讲就是通过维数递增的胞腔（同胚于 Dn 的空间）

逐步粘合而成的拓扑空间，对一般的拓扑空间，只有弱弱弱同同同伦伦伦等等等价价价性成立.）

Proof. 我们选取一个使临界值的原像中恰含有一个临界点的 Morse函数. 由于 M 是

紧流形，取到最小值的点都是非退化临界点，因此构成一个离散集，也就是说存在

某个 c 使得 f−1((∞, c]) 是一些 0 维胞腔.

现在就可以分别利用 1.4.26 和 1.4.27，每经过一个临界值，都恰好对应一个临

界点，对应同伦类黏贴上某个 k ≤ n 维胞腔（我们这里略去了一些细节. 直观上如果 Xi+1

能形变收缩到 Xi ∪ ek，那么当 Xi 进一步形变收缩到 Xi−1 中时，这个胞腔 ek 的边界也随之移动

到 Xi−1 中，于是最终我们可以只保留骨架），直到得到整个流形 M 对应的同伦类. 如果

最后得到的胞腔复形有小维数胞腔黏贴在大维数胞腔上，我们可以通过胞腔逼近让

它在不改变同伦类的情形下形变到对应维数的骨架内. 这样的过程至多进行有限次，

最终会得到一个有限 CW 复形.

上述命题本质上建立起了分析（二阶偏导数性质），几何（流形），组合（胞腔

复形）之间的联系. 我们可以看到，上述命题实际上还建立起了各阶指标的非退化点

个数和各阶维数的胞腔个数之间的联系，后者虽然是一个组合量，但在胞腔复形的

理论中又可以和拓扑不变量——流形对应的同同同调调调群群群维维维数数数联系起来，从而给出 Morse

不不不等等等式式式，它允许我们通过 Morse 函数来得到关于流形的同调群信息，特别地还可以

用来计算 Euler 示示示性性性数数数. 比如一个亏格 g 的连通闭曲面如果垂直地放在桌面上，那

么高度函数会给出 1个指标 0临界点，2g 个指标 1临界点和 1个指标 2临界点，于

是就得到 χ(Σg) = 1− 2g + 1 = 2− 2g. 我们甚至可以从这些临界点出发来建立一个

同调理论，称为 Morse 同同同调调调，它也满足各条同调公理……关于 Morse 理论的更多

内容，这里不再赘述.
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1.4.4 带边流形与 Brouwer 不动点定理

我们先介绍带边流形的概念. 我们有很多引入带边流形的动机，比如说在研究积

分理论时，我们要对一个图形内部和边界上的积分作一个对应. 从几何上看，我们常

说的流形总有种满足“自封闭性”的味道，每个点附近的所有点都还是在流形中. 但

我们有时也会讨论诸如实心球，实心圆盘，或者一个曲面挖去一个开圆盘这种图形，

它们同样具有足够好的性质. 上述的这些图形的都是紧的，但是其内部都是非紧的并

且构成一个通常所说的流形. 除此之外，其边界也会构成一个低维数的流形.

Definition 1.4.34 (带边流形). 称 M 是一个带带带边边边拓拓拓扑扑扑流流流形形形，如果 M 是第二可数

的 Hausdoff 空间，并且在每点附近都存在一个开开开邻域同胚于欧氏空间 Rn 或者上半

欧氏空间 Hn := Rn−1 × R≥0. 如果 x 满足存在一个局部同胚 φ : U → Hn 使得

φ(x) ∈ ∂Hn = {(x1, . . . , xn) : xn = 0}，那么称 x 为 M 的一个边边边界界界点点点. 全体边界点

构成集合记为 ∂M .

类似光滑流形的定义，所有局部同胚 ϕα : Uα → Rn or Hn 给出一些坐坐坐标标标卡卡卡集集集.

相相相容容容坐坐坐标标标卡卡卡的定义仍然是使得 φ2 ◦ φ−1
1 在相交区域内是光滑映射（这里有一些问题：

一个 Hn → Rn 的光滑映射说的是它是上半空间的一个开开开邻邻邻域域域上的光滑映射的限制）的两个坐标

卡，由此给出光滑图册和等价性的概念. 光滑结构指光滑图册的等价类，赋予了光滑

结构的带边拓扑流形被称为光光光滑滑滑带带带边边边流流流形形形.

Lemma 1.4.35. Rn 中任意开集 U 和 Hn 中包含边界点的任意开集 V 在拓扑意义

下不同胚.

Proof. 任取一个边界点 x，若有同胚 Φ : V → U，则有相对同调群之间的同构

0 ∼= Hn(V, V − x) → Hn(U,U − Φ(x)) ∼= Z.

矛盾.

根据上述结论，如果一个点在某个坐标卡映射下成为了上半空间的边界点，那

么在它附近的任何坐标卡映射都会把它同胚到上半空间的边界点. 而对剩下的点来

说，总存在它附近的一个坐标卡同胚于 Rn，于是所谓“边界点”和“内点”的定义

是分离的.

Proposition 1.4.36. 对 n 维带边流形 M，它的全体内点 M − ∂M 构成 n 维光滑

流形，全体边界点 ∂M 构成 n− 1 维光滑流形.

Remark. 需要特别强调的是，∂M 的定义是内内内蕴蕴蕴的，可以直观想象为所有坐标卡映

射引出的边界之并. 而单独选定一个拓扑空间 X，我们不不不能能能谈论它的边界.只有在 X

成为某个 Y 的子空间时，我们把 X − IntX 称为 X 的边界，并且不同的嵌入方式

会导致边界的定义不同（比如作为低维空间嵌入时，其边界就是自身）.

值得一提的是，在多复变中我们经常应用的上半空间定义为 Hn = {(z1, . . . , zn) :

Im zn > 0}. 类似单复变中的上半平面空间，它和 Cn 之间不存在解析同胚.（但是存
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在微分同胚） 它可以与单位球这种有界域通过所谓 Cayley 映射建立解析同胚，但是

在实际运用中更便于计算.（一个例子是双曲几何中上半平面模型给出的度量 dz
|Im z| 相比圆盘

模型的 2 dz
1−|z|2 更简单）

对带边流形我们也可以在边界上讨论切空间. 虽然在局部上对应的是 n 维半空

间，但是我们仍然有 n 个线性无关的方向，从而仍然可定义一个 n 维的切空间.（这

里最简单地看法还是抽象的导子定义 1.2.7，如果运用几何看法，我们会发现沿垂直于超平面方向

远离 x 和靠近 x 分别给出正负两个方向的切向量，因此最后产生的切空间还是线性空间而不是半

空间.） 将 ∂M 作为流形所给出的 n− 1 维切空间可以被视为这个 n 维切空间的子空

间.

带边流形可以在边界上给出所谓诱诱诱导导导定定定向向向的概念. 诱导定向对体积形式定义最

为方便，不过我们也可以使用标架的定义来展现这一点. 我们只需要考虑如何从半平

面上的标架类 E 诱导出 n − 1 维超平面上的标架类. 想法是反过来应用之前法向量

的想法，我们在超平面上选择一个对应于 E 的标架，使得其第第第一一一个个个分分分量量量外外外指指指，剩下

的分量均落在超平面内，去掉第一个分量之后所得的 n − 1 维标架 E′ 就在差一个

标架类的意义下是确定的，这就给出了边界上的诱诱诱导导导定定定向向向，我们容易验证其定义是

和坐标卡选取无关的，所以是局部相容的，从而给出了 ∂M 的一个定向. 注意这里

“外指”是良定义的，因为上半空间都包含在流形内，因此“垂直于超平面向下指”

的向量是典范的外指法向量.

在实际应用中，比如在数学分析里我们经常考虑平面上和空间内一个区域在边

界上的诱导定向以确定积分的符号. 用“第一个分量外指”的原则就很容易确定定

向，比如对三维区域，我们可想象有一个标准正交标架在区域内随意平移移动，然

后在边界上通过一个刚体变换把法向量外指，剩下的两个分量给出的标架就给出曲

面定向.

Remark. 这个概念在拓扑中是通过相对同调长正合列所给出的边界同态

Hn(M,∂M)
∂−→Hn−1(∂M)

所定义的，我们可以验证这是一个同构. 与一般流形不同，带边流形的基本类是

Hn(M,∂M) 的代表元，这是因为我们本质是考虑 A = M − ∂M 上的截面，它与

Hn(M,M − A) 之间有个对应. 我们就把带边流形基本类在边界同态下的像称作在边

界上的诱导定向.

即使诱导定向有拓扑上的定义，在实际运用中我们更青睐使用微分拓扑定义来

提供直观，比如考虑胞腔复形时，每个胞腔上的定向就可以用标准标架来表示，然

我们可以容易将其定向和边界上的诱导定向推出到拓扑空间中并将其可视化.

我们曾在正则水平集定理 1.3.24 中使用正则值的原像集构建了很多光滑子流形.

对带边流形而言，也有类似的命题成立.

Lemma 1.4.37. 设 f :M → R 是光滑函数，若 0 是 f 的正则值，则 f−1([0,+∞))

是带边流形，其边界为 f−1(0).
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Proof. 对任意 p ∈ f−1((0,∞))，存在其开邻域内所有点的值仍落在 (0,+∞) 中，因

此在它附近可以直接用 M 的坐标卡作为其坐标卡映射.

考虑 p ∈ f−1(0) 的情形. 正则水平集定理已经告诉我们 f−1(0) 在 p 附近是

一个 n − 1 维子流形，因此存在一个 p 附近的局部坐标卡 φ : U → V ⊂ Rn 使

得 φ(f−1(0) ∩ U) = Rn−1 ∩ V . 我们就这样把 p 的邻域等同到欧氏空间中. 由

于 df |p : TpM → R 是淹没，因此关于最后一个分量的偏导数
∂f

∂xn

∣∣
p
̸= 0. 如果

∂f

∂xn

∣∣
p
> 0，那么 p 的一个小邻域与上半空间的交在 f 下的像均为正值，反之则与

下半空间的交在 f 下的像均为正值. 于是存在 p 附近的同胚于上半空间的邻域，这

就说明了 f−1(0) 是 f−1([0,+∞)) 的边界.

Proposition 1.4.38 (带边流形水平集定理). 设 f :M → N 是 m 维流形到 n 维流

形的光滑映射，y ∈ N 同时是关于 f 和 f |∂M 的正则值. 则 f−1(y) 是一个 m− n 维

带边流形，且 ∂f−1(y) = f−1(y) ∩ ∂M .

Proof. 对 p ∈ f−1(y) ∩ (M − ∂M)，根据一般的水平集定理即可知 f−1(y) 在 p 附

近是 m − n 维子流形. 我们只需考虑 p ∈ f−1(y) ∩ ∂M 时的情形. 通过选择局部坐

标卡，我们可不妨设 f : Hm → Rn 并且 p ∈ ∂Hn. 首先利用光滑 Tietze 扩张定理

可将 f 扩张为 Rm → Rn 的光滑映射 f̃，并且在上半空间上和原先的 f 等同. 由于

df̃ |p = df |p，因此 f̃ 在 p 处是淹没，于是 f̃−1(y) 在 p 的邻域 Np 内为 m− n 维子

流形. 但

f−1(y) ∩Np = (f̃−1(y) ∩Np) ∩ {x : xm ≥ 0}.

换言之考虑 π : (x1, . . . , xm) 7→ xm，则 f−1(y) ∩Np = π|−1

f̃−1(y)∩Np
([0,+∞)).

我们证明 0 是上述映射的正则值. 这是因为对任意 q ∈ π|−1

f̃−1(y)∩Np
(0) 均有

Tq(f̃
−1(y)) = ker df, Tq(f̃

−1(y)) ∩ (Rm−1 × {0}) = Tq(f̃
−1(y) ∩ ∂Hn) = ker df |∂Hn .

而根据条件，df 和 df |∂Hn 都是满同态，因此它们的维数分别是 m−n和 m−n−1.

于是 Tq(f̃
−1(y)) 中存在最后一个分量非零的向量，从而 dπ : Tq(f̃

−1(y)) → R 不是

零映射，因此 q 是正则点，0 是正则值.

利用上一个引理即可知 f−1(y)∩Np 是 p附近的 m−n维带边流形，且 p落在边

界上. 这就说明了整个 f−1(y) 是带边流形，并且其边界为 f−1(y) ∩ ∂M . 证毕.

上述命题可以用来推出一个有关不动点的命题，其证明用到一维流形的分类，

我们承认该命题的正确性.

Proposition 1.4.39. 对任意带边紧光滑流形 M，不存在光滑映射 f :M → ∂M 使

得 f |∂M = id.

Proof. 假设这样的光滑映射存在. 由 Sard 定理 1.4.3，存在关于 f 和 f |∂M 的正则

值 y ∈ ∂M . 根据带边流形水平集定理，由于 codim ∂M = 1，因此 f−1(y) 是 M 中
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的一维带边流形. 但是一维带边紧流形必定由有限个圈和有限个线段构成，而一条线

段有两个端点，从而 #∂f−1(y) 是一个偶数. 但是

∂f−1(y) = f−1(y) ∩ ∂M = {y} ⇒ #∂f−1(y) = 1.

矛盾，证毕.

Remark. 本结论去掉紧性条件后显然不对，比如存在从上半平面到 x 轴的光滑投影

映射. 非紧的光滑流形允许只含有一个端点，从而在非紧情形下该证明失效.

对连续映射该命题也是成立的. 这是因为边缘同态诱导出同构

Hn(M,∂M ;Z2)
∼→ Hn−1(∂M ;Z2) ∼= Z2

于是相对同调长正合列可知含入映射 i 所诱导的 i∗ : Hn−1(∂M ;Z2) → Hn−1(M ;Z2)

是零同态. 现在在同调群层面上考虑

Hn−1(∂M ;Z2)
i∗−→
0
Hn−1(M ;Z2)

f∗−→Hn−1(∂M ;Z2)

则 fi = id ⇒ id∗ = f∗i∗ = 0，矛盾. 我们能隐约从奇偶性论证和 Z2 系数同调的论证

看出有关模 2 映射度的一些想法.

万事俱备，我们来证明下述著名定理：

Theorem 1.4.40 (Brouwer 不动点定理). 任何连续映射 f : Dn → Dn 存在不动

点.

几乎所有证明方法都会把问题化归为下述命题：

Proposition 1.4.41 (Retraction Theorem). 不存在连续映射 f : Dn → ∂Dn =

Sn−1 使得 f |Sn−1 = id.

这是因为如果连续映射 f : Dn → Dn 无不动点，则对每个 x ∈ Dn，
−−−→
f(x)x 都诱

导出一条射线，将该射线与 Sn−1 的交记为 g(x). 我们容易通过具体写出 g 关于 f

的表达式来说明 g 确实是一个连续映射，并且当 x ∈ Sn−1 时总有 g(x) = x.

这个命题就和我们之前所做的工作关系很大了，因为 Dn 就是带边光滑流形的

一个最基本例子. 所以根据命题 1.4.39，不存在光光光滑滑滑映映映射射射 f : Dn → ∂Dn = Sn−1 使

得 f |Sn−1 = id. 进而我们可以说明有光滑版本的 Brouwer 不动点定理成立（同样的，

具体表达式保证了在上一段论证中 f 光滑 ⇒ g 光滑.） 剩下的问题就是如何从光滑命题转

化为连续命题.

Proof. 对任意连续映射 f : Dn → Dn，假设 f 没有不动点. 则根据 Dn 的紧性可知

∥f(x)− x∥Dn 存在非零下界，记为 δ. 根据 Weierstrass 逼近定理，对任意 ε 可以取

多项式函数 Pε : D
n → Rn 使得

∥Pε − f∥Dn ≤ ε.
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但使用逼近之后像集可能落于 Dn 之外，我们需要添加一个放缩因子予以修正，只

需考虑 1
1+ε

· Pε 即可. 现在我们有∥∥∥∥ 1

1 + ε
Pε − f

∥∥∥∥
Dn

≤
∥∥∥∥ 1

1 + ε
Pε − Pε

∥∥∥∥
Dn

+ ∥Pε − f∥Dn

≤ ε

1 + ε
+ ε ≤ 2ε.

而根据光滑版本的 Brouwer 不动点定理，存在 x ∈ Dn 使得 1
1+ε

Pε(x)，这导致

|x− f(x)| ≤ 2ε. 取 ε = δ/3 即知矛盾，证毕.

上述证明堪称用微分观点解决问题的典范. 很多代数拓扑中的命题都有微分拓扑

中的对应物，其证明可能更加容易或直观，并且有可能能通过逼近的方式给出连续

版本的严格证明. 在建立同调理论或同伦理论后，Brouwer 不动点定理将成为这个体

系下的简单应用，这并不代表微分拓扑的一些观点会被更高级的知识完全取缔，相

反微分拓扑中有关正则值，映射度和逼近的命题都是理解与计算拓扑量的重要工具.

我们介绍和 Brouwer 不动点定理等价的一些命题.

Proposition 1.4.42. 下述命题两两等价：

(1) (Brouwer 不动点定理) 任何连续映射 f : Dn → Dn 存在不动点.

(2) (Retraction Thm) 不存在连续映射 f : Dn → ∂Dn = Sn−1 使得 f |Sn−1 = id.

(3) (Homotopy Thm) Sn−1 上的恒等映射不是零伦的.

(4) 若连续映射 f : Dn → Rn 使得 f |Sn−1 = id，则 Dn 落在 f 的像集中.

(5) (介值原理) 设 vi : [−1, 1]n → R 是连续函数，满足 vi(x) < 0 对任意 xi = −1

成立，vi(x) > 0 对任意 xi = 1 成立. 则存在 x ∈ [−1, 1]n 使得 vi(x) = 0 对每

个 i 均成立.

(6) 若有一些闭集 Bi ⊂ [−1, 1]n 分别分离两个 i-面 {x : xi = −1} 和 {xi = 1}，则

这些 Bi 的交非空.

(7) 设 B0, . . . , Bn 构成标准单形 ∆n 的一个闭覆盖，满足第 i 个顶点 ei ∈ Bi 并且

其对面 ∂iei ∩Bi = ∅. 则这些 Bi 的交非空.

这些命题各有不同的风格，各有不同的证明与不同的应用. 最值得一提的是其中

的命题 (3)，因为它可以作为可以作为著名的 Hopf 映射度定理的推论：

Theorem 1.4.43 (Hopf 映射度定理). πn(S
n) ∼= Z. 换句话说，连续映射 f : Sn →

Sn 的映射度可以唯一决定其同伦类.

现在 Sn 上的恒等映射映射度总为 1，而零伦映射的映射度总为 0，于是我们可

以通过弱版本的映射度定理“deg f = 0 ⇒ f 零伦”来给出 Brouwer 不动点定理的



1 流形的微分结构 83

证明. 这个命题的证明就更多了，除了利用标准的同伦切除定理之外，笔者还已知一

个利用单纯逼近与组合想法的容易证明. 由于其证明和本课程差距较大，这里略去.

另一个值得一提的命题是 (7). 这是因为它和所谓覆覆覆盖盖盖维维维数数数的定义有关. 给定一

个拓扑空间 X，称 X 的覆盖维数是 n，如果对任意 X 的开覆盖 U，存在其加细 U′

使得任何点 x ∈ X 至多属于 n+ 1 个 U′ 中的开集. 对一个度量空间而言，n 可定义

为最大的使得任意 ε-覆盖都存在某个点被 n+1 个度量球覆盖的数. 这样对标准度量

下的 n-单形 ∆n，它的覆盖维数就恰好是 n. 我们考虑一些闭度量球对 ∆n 的覆盖，

不妨设它是有限的. 当 ε 足够小时每个球都会和某个边界 ∂i∆n 不交，将其染为第 i

种颜色. 特别地，我们可以把包含 ei（从而只包含 ei）的度量球都染为 i 色. 这样每

种颜色的度量球之并就满足条件 (7)，我们可以选择一点落在所有颜色的度量球中，

它至少含于 n + 1 个不同的度量球内. 进一步地，我们可以证明 Rn 的覆盖维数是 n

并且 n 维流形的覆盖维数也是 n.

我们最后来看一些描述连续映射与光滑映射之间关系的命题. 这里只罗列而不给

出证明.

Proposition 1.4.44 (连续函数 Whitney 逼近定理). 设 M 是光滑流形，A ⊂ M

为闭子集. 对任意在 A 上光滑的连续函数 f : M → R 与任意恒正连续函数 δ : M →

R>0，存在光滑函数 f :M → R 使得

• 对任意 p ∈ A 有 f(p) = g(p)；

• 对任意 p ∈M 有 |f(p)− g(p)| < δ(p).

注意，闭集 A 上的光滑函数指的是它是某个 A 的开邻域上的光滑函数在 A 上的限

制.

这个命题的证明较为容易，只需用到单位分解.

Proposition 1.4.45 (连续映射 Whitney 逼近定理). 设 M,N 是光滑流形，g ∈

C0(M,N) 是连续映射. 则存在同伦于 g 的光滑映射 f ∈ C∞(M,N). 此外，若 g 在

闭子集 A ⊂M 上光滑，则可以使得 f |A = g|A.

Proposition 1.4.46 (连续同伦提升为光滑同伦). 设 f0, f1 : M → N 是光滑流形之

间的光滑映射. 若 f0 和 f1 在拓扑意义下同伦，则它们也是光滑同伦的.

这两个命题的证明需要用到管状邻域定理，它们的证明较为复杂，但是非常清

楚地刻画出了连续性和光滑性之间的关系，使得在讨论同伦不变量时我们可以通过

拣取一个与给定连续映射同伦的光滑映射来利用微分拓扑的工具给出定义/证明. 笔

者印象中的一个例子是在定义相相相交交交数数数时，需利用所谓横截性才能产生有限交点，这

时候就需要在同伦意义下选取一个满足横截性的映射.
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